Course Logistics

- Project team member lists due this Sunday September 17th, 11:59 PM.
- Most teams should consist of 3 people.
- If you want to work individually, you need to send an email to me to get an approval.
- Discussion thread on Canvas to find teammates.
- For student paper presentations, please send me your slides by 2pm on the day of the presentation.

SlowFast Networks for Video Recognition ICCV 2019

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, Kaiming He

Motivation

Spatial (e.g., objects, scenes) and temporal (e.g., actions) cues might need different processing mechanisms.

Motivation

"Neural mechanisms of form and motion processing in the primate visual system", Essen et al., Neuron, 1994

Two Stream CNNs

- The first stream operates on a single RGB video frame.
- The second stream operates on optical flow computed between two adjacent video frames.

"Two-Stream Convolutional Networks for Action Recognition in Videos," Simonyan et al., NeurIPS 2014

SlowFast Networks

- A two-pathway video recognition model where the slow pathway captures semantic spatial information.
- The fast pathway is a lot more lightweight than the slow pathway and it captures rapidly changing motion.
- Lateral connections fuse the two pathways.

SlowFast Networks

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$
raw clip	-	-	64×224^2
data layer	stride 16, 1 ² stride 2, 1 ²		Slow : 4×224^2 Fast : 32×224^2
conv ₁	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$Slow: 4 \times 112^2$ Fast: 32×112^2
pool ₁	$\begin{array}{c cccc} 1 \times 3^2 \max & 1 \times 3^2 \max \\ \text{stride 1, } 2^2 & \text{stride 1, } 2^2 \end{array}$		$Slow: 4 \times 56^{2}$ Fast: 32×56 ²
res_2	$\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3\times1^2}{1\times3^2}, \frac{8}{1\times1^2}, \frac{8}{32}\\ 1\times1^2, \frac{32}{32} \end{bmatrix} \times 3$	$Slow: 4 \times 56^{2}$ Fast: 32×56 ²
res3	$\begin{bmatrix} 1 \times 1^2, 128\\ 1 \times 3^2, 128\\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \frac{3 \times 1^2, 16}{1 \times 3^2, 16} \\ 1 \times 1^2, \frac{64}{14} \end{bmatrix} \times 4$	$Slow: 4 \times 28^2$ Fast: 32 × 28 ²
res ₄	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 256\\ 1 \times 1^2, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, \frac{32}{32}\\ 1 \times 1^2, \frac{128}{128} \end{bmatrix} \times 6$	$Slow: 4 \times 14^2$ Fast: 32×14 ²
res5	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 512\\ 1 \times 1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$Slow: 4 \times 7^{2}$ Fast: 32×7^{2}
	global average pool, c	# classes	

Lateral Connections

Feature tensor from the slow pathway

aT x S^2 x bC

- **Time-to-channel:** Feature tensor of shape (*a*T x S² x *b*C) is reshaped into (T, S², *ab*C), i.e., all *a* frames are packed into the channel dimension.
- **Time-strided sampling:** Only one frame out of every *a* frames is sampled.
- **Time-strided convolution:** 3D convolution with stride *a* is applied.

Fusing Slow and Fast pathways with lateral connections is better than the Slow and Fast only baselines.

	lateral	top-1	top-5	GFLOPs
Slow-only	-	72.6	90.3	27.3
Fast-only	-	51.7	78.5	6.4
SlowFast	-	73.5	90.3	34.2
SlowFast	TtoC, sum	74.5	91.3	34.2
SlowFast	TtoC, concat	74.3	91.0	39.8
SlowFast	T-sample	75.4	91.8	34.9
SlowFast	T-conv	75.6	92.1	36.1

Varying values of β , the channel capacity ratio of the Fast pathway to make SlowFast lightweight.

	top-1	top-5	GFLOPs
Slow-only	72.6	90.3	27.3
$\beta = 1/4$	75.6	91.7	54.5
1/6	75.8	92.0	41.8
1/8	75.6	92.1	36.1
1/12	75.2	91.8	32.8
1/16	75.1	91.7	30.6
1/32	74.2	91.3	28.6

The proposed training recipe achieves comparable results without ImageNet pre-training.

model	pre-train	top-1	top-5	GFLOPs
3D R-50 [56]	ImageNet	73.4	90.9	36.7
3D R-50, recipe in [56]	-	69.4	88.6	36.7
3D R-50, our recipe	-	73.5	90.8	36.7

Comparison to the state-of-the-art

model	flow	pretrain	top-1	top-5	GFLOPs×views
I3D [5]		ImageNet	72.1	90.3	$108 \times N/A$
Two-Stream I3D [5]	1	ImageNet	75.7	92.0	$216 \times N/A$
S3D-G [61]	1	ImageNet	77.2	93.0	$143 \times N/A$
Nonlocal R50 [56]		ImageNet	76.5	92.6	282×30
Nonlocal R101 [56]		ImageNet	77.7	93.3	359×30
R(2+1)D Flow [50]	1	-	67.5	87.2	152×115
STC [9]		-	68.7	88.5	$N/A \times N/A$
ARTNet [54]		-	69.2	88.3	23.5×250
S3D [61]		-	69.4	89.1	$66.4 \times N/A$
ECO [63]		-	70.0	89.4	$N/A \times N/A$
I3D [5]	1	-	71.6	90.0	$216 \times N/A$
R(2+1)D [50]		-	72.0	90.0	152×115
R(2+1)D [50]	1	-	73.9	90.9	304×115
SlowFast 4×16, R50		•	75.6	92.1	36.1 × 30
SlowFast 8×8, R50		-	77.0	92.6	65.7×30
SlowFast 8×8, R101		-	77.9	93.2	106×30
SlowFast 16×8, R101		-	78.9	93.5	213×30
SlowFast 16×8, R101+NL		-	79.8	93.9	234×30

Accuracy vs. complexity tradeoff.

Results on AVA

Comparison to the state-of-the-art

model	flow	video pretrain	val mAP	test mAP
I3D [20]		Kinetics-400	14.5	-
I3D [20]	\checkmark	Kinetics-400	15.6	-
ACRN, S3D [46]	\checkmark	Kinetics-400	17.4	-
ATR, R50+NL [29]		Kinetics-400	20.0	-
ATR, R50+NL [29]	\checkmark	Kinetics-400	21.7	-
9-model ensemble [29]	\checkmark	Kinetics-400	25.6	21.1
I3D [16]		Kinetics-600	21.9	21.0
SlowFast		Kinetics-400	26.3	-
SlowFast		Kinetics-600	26.8	-
SlowFast, +NL		Kinetics-600	27.3	27.1
SlowFast*, +NL		Kinetics-600	28.2	-

Summary

- A framework that achieves great results on a variety of action recognition datasets.
- Very effective optimization protocol for training video models from scratch.
- A nice extension to spatiotemporal localization task.