Keeping Your Eye on the Ball: Trajectory
Attention in Video Transformers

NeurlPS 2021

Mandela Patrick, Dylan Campbell, Yuki M. Asano, Ishan Misra, Florian Metze,
Christoph Feichtenhofer, Andrea Vedaldi, Joao F. Henriques



Motivation

* Motion cues often provide relevant information for recognizing a person’s

actions.

Input Video
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Something-Something Dataset

e ~200K videos of “temporally heavy” human actions (e.g., Covering [something]
with [something], Letting [something] roll along a flat surface, etc.).
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e ~200K videos of “temporally heavy” human actions (e.g., Covering [something]
with [something], Letting [something] roll along a flat surface, etc.).

Method SSv2

SlowFast (Feichtenhofer et al., 2019b) 61.7
TSM (Lin et al., 2019) 63.4

STM (Jiang et al., 2019) 64.2
MSNet (Kwon et al., 2020) 64.7
TEA (L1 et al., 2020b) 65.1
bLVNet (Fan et al., 2019) 65.2
TimeSformer 59.5

TimeSformer underperforms on temporally heavy datasets like Something-Something-v2



Motivation

 The authors argue that TimeSformer’s divided space-time attention cannot capture
motion trajectories of objects across time.




Trajectory Attention

e |nstead, the authors propose trajectory attention, a mechanism for aggregating
information along implicitly determined motion paths.
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Trajectory Attention

e |nstead, the authors propose trajectory attention, a mechanism for aggregating
information along implicitly determined motion paths.
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Without using optical flow or any other explicit motion-based data.



Technical Approach

 The proposed trajectory attention operation takes as input a TSxD
spatiotemporal tensor where T is the number of frames and S depicts the spatial
dimension, and D is the feature dimensionality.
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Technical Approach

 The proposed trajectory attention operation takes as input a TSxD
spatiotemporal tensor where T is the number of frames and S depicts the spatial
dimension, and D is the feature dimensionality.
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Technical Approach

 Compared to prior approaches, the attention is performed along trajectories.

Spatial
Attention
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A: TSxTxS
<E|:'> |..J This is a standard quadratic self-attention over
- spatiotemporal feature volume.

O

Z: TS xD




Trajectory Attention

* |[n practice, the trajectory attention is implemented using standard joint space-
time attention.

The reference patch




Trajectory Attention

e |[n practice, the trajectory attention is implemented using standard joint space-
time attention.

The reference patch




Trajectory Attention

e |[n practice, the trajectory attention is implemented using standard joint space-
time attention.

The reference patch

Attention-driven discovery of
the trajectory of the ball.




Trajectory Attention

e |nstead, the authors propose trajectory attention, a mechanism for aggregating
information along implicitly determined motion paths.

The representation for the reference patch ...



Trajectory Attention

e |nstead, the authors propose trajectory attention, a mechanism for aggregating
information along implicitly determined motion paths.

... Is computed as a weighted average
of patches along the trajectory.



Technical Approach

 Compared to prior approaches, the attention is performed along trajectories.

Spatial
Attention

e The only difference is in the normalization step.

Z: TS xD




Technical Approach

e |[n standard spatiotemporal self-attention, the normalization is done across the
entire spatiotemporal volume.




Technical Approach

e |[n standard spatiotemporal self-attention, the normalization is done across the
entire spatiotemporal volume.

All the attention values across the volume have to sum up to 1.



Technical Approach

 The authors propose to use per-frame softmax normalization.




Technical Approach

 The authors propose to use per-frame softmax normalization.

The values inside each frame have to sum up to 1.



Technical Approach

* Once the trajectories are computed, the authors pool them across time to
reason about intra-frame information/connections.
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Technical Approach

* Once the trajectories are computed, the authors pool them across time to
reason about intra-frame information/connections.

Temporal
Attention

—

Standard temporal attention from the divided
space-time attention block.

Y- TS xD




Temporal Attention

* For each query patch, the attention is applied at the same spatial location but
across different frames.
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The representation for the reference patch ...



Temporal Attention

* For each query patch, the attention is applied at the same spatial location but
across different frames.

... Is computed as a weighted average of patches at
the same spatial but different temporal locations



Temporal Attention

* For each query patch, the attention is applied at the same spatial location but
across different frames.

Even though these patches might not be alighed, they might now incorporate
relevant trajectory information (i.e., after the first attention step).



Joint Space-Time Attention

 Computing pairwise similarities between every single pair of patches in a video
can be very computationally costly.

» Stacking two distinct attention layers on top of each other is even more costly.




Computational Cost

* The proposed trajectory attention is a lot more computationally expensive than (1)
joint space-time attention, and (2) divided space-time attention.

Attention GFLOPS
Joint Space-Time 180.6
Divided Space-Time 185.8
Trajectory 369.5




Computational Cost

* The proposed trajectory attention is a lot more computationally expensive than (1)
joint space-time attention, and (2) divided space-time attention.

Attention GFLOPS
Joint Space-Time 180.6
Divided Space-Time 185.8
Trajectory 369.5

Completely contrary to the motivation of the paper!



Approximating Attention

* The idea is similar to standard matrix factorization / low-rank decomposition
methods.

Algorithm 1 Orthoformer (proposed) attention

1: P < MostOrthogonalSubset(Q, K, R)
2: ﬂl — S(QTP/\/E)

3: Qz — S(PTK/\/Z_))

4. 'Y = Ql(QQV)




Approximating Attention

* The idea is similar to standard matrix factorization / low-rank decomposition
methods.

Algorithm 1 Orthoformer (proposed) attention =~ 4R~ dxN dx N

1: P < MostOrthogonalSubset(Q, K, R |E| |I|
2: ﬂl — S(QTP/\/E)

3: ﬂz - S(PTK/\/E)

d - feature dimensionality
4: Y = (Q2V) N - the number of original tokens

R - the number of prototypes (R << N)




Approximating Attention

* The idea is similar to standard matrix factorization / low-rank decomposition
methods.

Algorithm 1 Orthoformer (proposed) attention

N x d dx R N xR
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Projecting the queries to the
query prototypes.
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Approximating Attention

* The idea is similar to standard matrix factorization / low-rank decomposition
methods.

Algorithm 1 Orthoformer (proposed) attention
1: P < MostOrthogonalSubset(Q, K, R)
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Approximating Attention

* The idea is similar to standard matrix factorization / low-rank decomposition
methods.

Algorithm 1 Orthoformer (proposed) attention

N xd dxN
1: P < MostOrthogonalSubset(Q, K, R)
3: ﬂz — S(PTK/\@)

4. 'Y = Ql(ﬂQV)

Such approximation eliminates the need to do N*2 comparisons where
N=ST can be a very a large number.



Approximation Ablations

* The results are evaluated on the Kinetics-400 and Something-Something-V2
action recognition datasets (using top-1 accuracy).

Attention Approx. Mem. K-400 SSv2
Trajectory (E) N/A 7.4 T79.7 66.5
Trajectory (A) Performer 5.1 729 3527

Nystromformer 3.8 77.5 64.0
Orthoformer 36 775 638
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Attention Approx. Mem. K-400 SSv2
Trajectory (E) N/A 7.4 | 79.7 66.5
Trajectory (A) Performer 5.1 729 3527

Nystromformer 3.8 77.5 64.0

Orthoformer 36 | 775 638

Substantial drop in performance.



Approximation Ablations

* The results are evaluated on the Kinetics-400 and Something-Something-V2
action recognition datasets (using top-1 accuracy).

Attention Approx. Mem. K-400 SSv2
Trajectory (E) N/A 7.4 | 79.7 66.5
Trajectory (A) Performer 5.1 729 52.7

Nystromformer 3.8 77.5 64.0

Orthoformer 36 | 775 638

Where are the computational cost metrics (i.e., GFLOPS) ?7??



Comparison to Prior Work

* The results are evaluated on Kinetics-400 (using top-1 accuracy).

(b) Kinetics-400
Method Pretrain Top-1 Top-5 GFLOPs X views
I3D [12] IN-1K 72.1 39.3 108 X N/A
R(2+1)D [82] - 72.0 90.0 152X5%23
S3D-G [94] IN-1K 74.7 93.4 142.8 X N/A
X3D-XL [26] - 79.1 93.9 48.4x3x10
SlowFast [27] - 79.8 93.9 234 x3x%x10
VTN [56] IN-21K 78.6 93.7 4218x1x1
VidTr-L [49] IN-21K 79.1 93.9 302x3x10
Tformer-L[8] IN-21K 80.7 94.7 2380x3x1
MVIT-B [24] - 81.2 95.1 455%x3X%3
ViViT-L [3] IN-21K 81.3 94.7 3092 x 3 x4
Miformer IN-21K 79.7 04.2 369.5%x3x%x10
Mformer-L IN-21K 80.2 94.8 1185.1x3x%x10
Mformer-HR IN-21K 81.1 95.2 958.8 x3x10




Comparison to Prior Work

* The results are evaluated on Kinetics-400 (using top-1 accuracy).

(b) Kinetics-400

Method Pretrain Top-1 Top-5 GFLOPs X views
I3D [12] IN-1K 72.1 39.3 108 X N/A
R(2+1)D [82] - 72.0 90.0 152X5%23
S3D-G [94] IN-1K 74.7 93.4 142.8 X N/A
X3D-XL [26] - 79.1 93.9 48.4x3x10
SlowFast [27] - 79.8 93.9 234 x3x%x10
VTN [56] IN-21K 78.6 93.7 4218x1x1
VidTr-L [49] IN-21K 79.1 93.9 302x3x10
Tformer-L[8] IN-21K 80.7 94.7 2380x3x1
MVIT-B [24] - 81.2 95.1 455%x3X%3
ViViT-L [3] IN-21K 81.3 947 3092 x 3 x4
Miformer IN-21K 79.7 04.2 369.5x3x%1

Mformer-L IN-21K 80.2 94.8 1185.1x3 X"

Mformer-HR IN-21K 81.1 95.2 958.8x3x1

Good results but the computational cost is huge



Comparison to Prior Work

* The results are evaluated on SSv2 (using top-1 accuracy).

(a) Something—Something V2

Model Pretrain Top-1 Top-5 GFLOPs X views
SlowFast [27] K-400 61.7 - 65.7x3x1
TSM [51] K-400 63.4 88.5 62.4X3 X2
STM [36] IN-1K 64.2 89.8 66.5x3x10
MSNet [44] IN-1K 64.7 89.4 67x1x1
TEA [50] IN-1K 65.1 - 70x3x10
bLVNet [25] IN-1K 652 903 128.6 X3 x 10
VidTr-L [49] IN-21K+K-400 60.2 - 351 x3x10
Tformer-L [8] IN-21K 62.5 - 1703 X3 X1
VIVIT-L [3]  IN-21K+K-400 654 89.8 3992 %43
MViT-B [24] K-400 67.1 90.8 170x3x 1
Miformer IN-21K+K-400 66.5 90.1 369.5x3x1
Mformer-L  IN-21K+K-400 68.1  91.2 1185.1X3 X1
Mformer-HR IN-21K+K-400 67.1 90.6 958.8x3x1




Comparison to Prior Work

* The results are evaluated on SSv2 (using top-1 accuracy).

(a) Something—Something V2

Model Pretrain Top-1 Top-5 GFLOPs X views
SlowFast [27] K-400 61.7 - 65.7x3x1
TSM [51] K-400 63.4 88.5 62.4X3X2
STM [36] IN-1K 64.2 89.8 66.5x3x10
MSNet [44] IN-1K 64.7 89.4 67%x1x1
TEA [50] IN-1K 65.1 - 70x3x10
bLVNet [25] IN-1K 65.2 90.3 128.6 X3 x 10
VidTr-L [49] IN-21K+K-400 60.2 : 351 x3x10
Tformer-L [8] IN-21K 62.5 - 1703%x3X1
VIVIT-L [3] IN-21K+K-400 654 89.8 3002 x4 x3
MVIT-B [24] K-400 67.1 90.8 170x3x 1
Mformer IN-21K+K-400 90.1 369.5x3x1
Mformer-L  IN-21K+K-400 91.2 1185.1x3x1
Mformer-HR IN-21K+K-400 90.6 058.8x3x1

Strong quantitative results




Ablation on Normalization

 Comparisons between spatial and spatiotemporal normalization schemes.

Norms Normgr | GFLOPS |  K-400 SSv2
X v 369.5 77.2 60.9
v X 369.5 79.7 66.5




Ablation on Normalization

 Comparisons between spatial and spatiotemporal normalization schemes.

Norm g NormST | GFLOPS ‘ K-400 SSv2
X v 369.5 77.2 60.9
v X 369.5 79.7 66.5

Spatial attention normalization works much better than spatiotemporal normalization.



Discussion Questions

* Why Is the attention approximation scheme introduced but not used in the
final variants of the approach?
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Discussion Questions

* Why Is the attention approximation scheme introduced but not used in the
final variants of the approach?

* Why Is the computational cost of the approximated model never reported In
GFLOPs?

» Based on the experiments, can we confidently say that the trajectory attention
Is the way to go?

* Why Is the spatial normalization scheme so much more effective than the
spatiotemporal one?



Summary

» Chaotic and poorly crafted paper.

* The proposed approach leads to better results but at a large
computational cost.

* Technical contributions are somewhat incremental (i.e., the trajectory
attention combines two standard attention schemes & changes
normalization).

* Quantitative improvements on temporally-heavy datasets (i.e., SSv2)
are impressive.



