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Motivation

• Many objects in the real-world exhibit dramatic variations in their appearance.
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Output Detections

• Most visual models are trained to detect objects at a very coarse level, with label 
spaces typically expressed in terms of nouns.
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Dataset
• We leverage the recently introduced HowTo100M dataset which includes over 

100M clips sourced from narrated instructional Web videos. 



Contextualized Object Embeddings (COBE)
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Results

Object-To-Text Retrieval:

• Given a visual query, we retrieve most similar (object, context) text pairs 

in the space of a contextual language model.
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Results
Text-To-Object Retrieval:

• Given a text query of the form (object, context), we retrieve most similar 

object instances in the space defined by the contextual language model.
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Results

Visual Object Analogies:

• We can leverage our learned contextualized object embeddings to combine 

different visual concepts via simple vector arithmetic.
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Conclusions
• In contrast to prior work, which focuses on noun-centric object detection, we 

present a framework for learning object detectors that generalize to novel 
object states.
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Conclusions
• In contrast to prior work, which focuses on noun-centric object detection, we 

present a framework for learning object detectors that generalize to novel 
object states.


• Our framework does not require manually labeled text descriptions but 
instead leverages automatically transcribed narrations of instructional videos. 

• Our model is effective in the scenarios of zero-shot and few-shot learning.


