

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

## Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

Andrew Owens Alexei A. Efros

UC Berkeley

Presented by: Justin Chen, Yulu Pan, Liujie Zheng, Soumitri Chattopadhyay

Dept. of Computer Science, UNC Chapel Hill 10/11/2023



- Motivation
- Methodology
- Applications
  - (a) sound source localization
  - (b) audio-visual action recognition
  - (c) on/off-screen audio-visual source separation
- Qualitative results and discussion



- Why learn audio and visual representations together at all?
  - Well, auditory and visual senses are closely related for perception, and muting any modality can degrade performance, even for humans!







McGurk effect: Humans fuse audio and visual signals at a fairly early stage of processing, the two modalities are used jointly in perceptual grouping

## **Idea:** train a model to find audiovisual correspondences in video



Supervised Unsupervised Self-Supervised - implausible label - limited power - derives label from a co-occurring input to "cow" another modality Target ð 0 0 0 $\bigcirc$  $O \land O C$  $\bigcirc$ O<sub>A</sub>O C  $\bigcirc$  $\bigcirc$ Input Input Input 2 Input moo

Why self-supervised?

• Manually annotating audio-visual correspondences would be very expensive and difficult to scale

Image credits: Virginia de Sa. Learning Classification with Unlabeled Data. NIPS 1994.

# Self-supervised Multisensory Representation

- Align video with sound
  - Train a network to distinguish aligned and misaligned clips
    - In half of the training data, the vision and sound streams are synchronized;
      the other half audio is shifted by a few seconds

Fused audio-visual representation



Model:

- 3D ResNet-18
- Early fusion
- 30Hz video + raw waveform



#### Fused audio-visual representation



Training:

- 750K AudioSet videos
- 4.2 sec. clips
- Random 2-5.8 sec. shifts
- 125 frames per example
- 60% accuracy on alignment task



The task is challenging!

• Audio is shifted by a few seconds vs random pairs of video + audio?







#### **Evaluated on Kinetics**



Fig. A1: Accuracy of our model in predicting audio-visual synchronization for the classes in the Kinetics dataset. Chance is 50%.



#### Application: Sound source localization





### Application: Sound source localization









- Action recognition on UCF-101
- Initialized the weights with those learned from our alignment task, fine-tuned on UCF-101 dataset

|                |         |                         |                                                         | Model                              | Acc. Table 1: Action recognition on UCF-101         |
|----------------|---------|-------------------------|---------------------------------------------------------|------------------------------------|-----------------------------------------------------|
|                | Self-su | pervised initialization |                                                         | Multisensory (full)                | 82.1% (split 1). We compared methods pretrained     |
| ⊒              |         |                         |                                                         | Multisensory (spectrogram)         | 81.1% without labels (top), and with semantic       |
| 5              |         | Vision                  | I ONIY Random pairs; no shifting<br>(Arandjelović 2917) | Multisensory (random pairing [16]) | 78.7% labels (bottom). Our model, trained both      |
|                |         | Random initialization   |                                                         | Multisensory (vision only)         | 77.6% with and without sound, significantly outper- |
|                | 82%     | 78%                     | 79%                                                     | Multisensory (scratch)             | 68.1% forms other self-supervised methods. Num-     |
|                |         | 68%                     |                                                         | I3D-RGB (scratch) [56]             | 68.1% bers annotated with "*" were obtained from    |
| 9              |         |                         |                                                         | O3N [19]*                          | 60.3% their corresponding publications; we re-      |
| u<br>g         |         |                         | I3D CNN (Carreira 2017)                                 | Purushwalkam et al. [61]*          | 55.4% trained/evaluated the other models.           |
| -              |         |                         | with Kinetics initialization                            | C3D [62,56]*                       | 51.6%                                               |
| 2              |         |                         |                                                         | Shuffle [17]*                      | 50.9%                                               |
| Ļ              |         |                         |                                                         | Wang et al. [63,61]*               | 41.5%                                               |
| $\exists \mid$ |         |                         |                                                         | I3D-RGB + ImageNet [56]            | 84.2%                                               |
| - L            | Full    | Scratch No sound F      | Random I3D+Kinetics                                     | I3D-RGB + ImageNet + Kinetics [56] | 94.5%                                               |
|                |         |                         |                                                         |                                    |                                                     |

### Application: on/off-screen source separation

- Create synthetic sound mixtures by summing an input video's audio track with a randomly chosen track from a random video.
- Train a U-Net that takes in mixed audio spectrogram and input and seperates on-screen and off-screen audios.
- Features from the multisensory encoder are fused at hierarchical levels, ensuring video features match audio sampling rate in concatenation



Video + mixed audio

Mixed spectrogram

### Application: on/off-screen source separation

#### Loss function used to train U-Net:

- Simple L1 distance
- Considered two versions
  - (a) Constraint of on-screen/off-screen identity is enforced (i.e.

foreground-background)

- (b) Treating the sounds as two layers(i.e. permutation invariant)
- Latter version allows on- and off-screen sounds to be swapped in loss term

$$\mathcal{L}_{\mathcal{P}}(x_F, x_B, \hat{x}_1, \hat{x}_2) = \min(L(\hat{x}_1, \hat{x}_2), L(\hat{x}_2, \hat{x}_1))$$



Video + mixed audio

Mixed spectrogram



| Method                 | All    |     |      | Mixed sex |        | Same sex   |        | GRID transfer |        |     |
|------------------------|--------|-----|------|-----------|--------|------------|--------|---------------|--------|-----|
|                        | On/off | SDR | SIR  | SAR       | On/off | <b>SDR</b> | On/off | SDR           | On/off | SDR |
| On/off + PIT           | 11.2   | 7.6 | 12.1 | 10.2      | 10.6   | 8.8        | 11.8   | 6.5           | 13.0   | 7.8 |
| Full on/off            | 11.4   | 7.0 | 11.5 | 9.8       | 10.7   | 8.4        | 11.9   | 5.7           | 13.1   | 7.3 |
| Mono                   | 11.4   | 6.9 | 11.4 | 9.8       | 10.8   | 8.4        | 11.9   | 5.7           | 13.1   | 7.3 |
| Single frame           | 14.8   | 5.0 | 7.8  | 10.3      | 13.2   | 7.2        | 16.2   | 3.1           | 17.8   | 5.7 |
| No early fusion        | 11.6   | 7.0 | 11.0 | 10.1      | 11.0   | 8.4        | 12.1   | 5.7           | 13.5   | 6.9 |
| Scratch                | 12.9   | 5.8 | 9.7  | 9.4       | 11.8   | 7.6        | 13.9   | <b>4.</b> 2   | 15.2   | 6.3 |
| I3D + Kinetics         | 12.3   | 6.6 | 10.7 | 9.7       | 11.6   | 8.2        | 12.9   | 5.1           | 14.4   | 6.6 |
| <i>u</i> -net PIT [36] | -      | 7.3 | 11.4 | 10.3      | -      | 8.8        | -      | 5.9           | -      | 8.1 |
| Deep Sep. [67]         | _      | 1.3 | 3.0  | 8.7       | _      | 1.9        | _      | 0.8           | -      | 2.2 |

Table 2: Source separation results on speech mixtures from the VoxCeleb (broken down by gender of speakers in mixture) and transfer to the simple GRID dataset. We evaluate the on/off-screen sound prediction error (On/off) using  $\ell_1$  distance to the true log-spectrograms (lower is better). We also use blind source separation metrics (higher is better) [68].



| VoxCeleb short videos (200ms) |        |     |      |      |  |  |  |  |  |
|-------------------------------|--------|-----|------|------|--|--|--|--|--|
|                               | On-SDR | SDR | SIR  | SAR  |  |  |  |  |  |
| Ours (on/off)                 | 7.6    | 5.3 | 7.8  | 10.8 |  |  |  |  |  |
| Hou et al. [42]               | 4.5    | _   |      | -    |  |  |  |  |  |
| Gabbay et al. [44]            | 3.5    | —   | _    | _    |  |  |  |  |  |
| PIT-CNN [36]                  |        | 7.0 | 10.1 | 11.2 |  |  |  |  |  |
| <i>u</i> -net PIT [36]        | —      | 7.0 | 10.3 | 11.0 |  |  |  |  |  |
| Deep Sep. [67]                | —      | 2.7 | 4.2  | 10.3 |  |  |  |  |  |

Table 3: Comparison of audiovisual and audio-only separation methods on short (200ms) videos. We compare SDR of the on-screen audio prediction (On-SDR) with audio resampled to 2 kHz.

- Adopted our training protocol on the concurrent/closely related prior models
- For the baselines, Viola-Jones face detector was used to crop the mouth region of speakers
- Downsampling to 2 kHz was done to maintain consistency with baselines having small number of frequency bands in their spectrogram





# Qualitative Results for on/off-screen Separation



# Qualitative Results for on/off-screen Separation



# Thank you! Questions?



- Our pipeline is simple, intuitive and effective. PixelPlayer's pipeline is way more complicated than ours.
- Their new MUSIC dataset only contains 685 videos
  - Unpopular dataset (101 stars on Github)
  - Only YouTube video IDs, what if the video gets deleted/corrupted?
- Their application is limited (only sound source localization and seperation) while ours has a wide range of applications in the audio-visual community
- They only test on the small MUSIC dataset, while ours test on more popular and large scale dataset. Ours has more quantitative results and more baselines.