VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

Zhan Tong, Yibing Song, Jue Wang, Limin Wang NeurIPS 2022

Presented by Liujie Zheng, Junjie Zhao

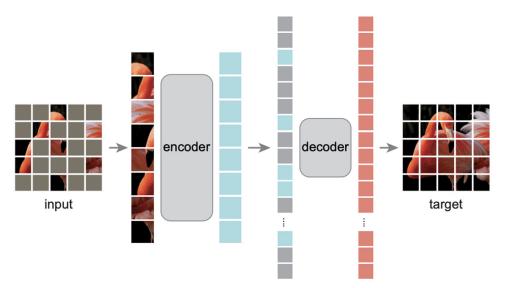
Motivation

Effective video representation learning improves downstream tasks

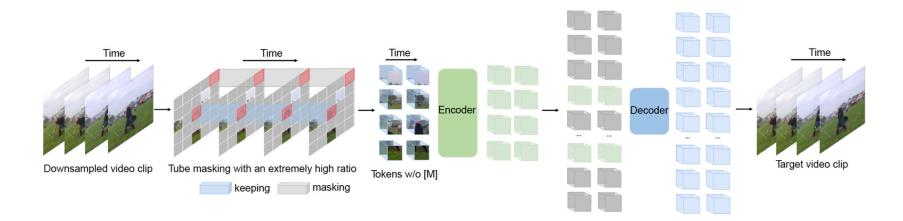
e.g. action detection

Challenges for video understanding

- temporal redundancy and correlation
- higher computational consumption for video

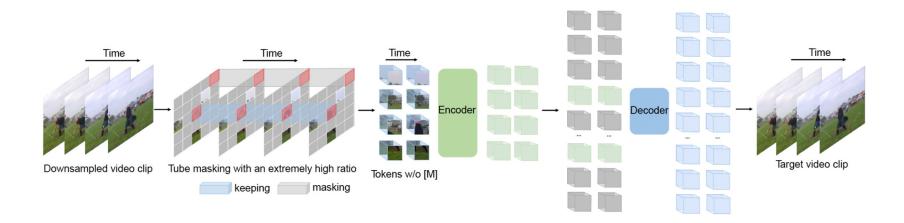

Challenges for training video transformer

- need extra large-scale image/video data
- heavily depend on pre-trained models (e.g. ImageNet-1K)


How to efficiently train a vanilla ViT on the video dataset itself without using any pre-trained model or extra data?

Inspiration: ImageMAE

- Mask random patches of the input image and reconstruct the missing pixels
- An asymmetric encoderdecoder architecture


VideoMAE

Self-supervised pre-training with masked autoencoder

- → a simple but effective masking and reconstruction proxy task
- an efficient pre-training process with only unmasked tokens into the encoder.

VideoMAE

A new masking strategy:

- tube masking with an extremely high ratio (90%-95%)
- making video reconstruction a more challenging self-supervision task

New Masking Strategy

Temporal redundancy: the semantics vary slowly in the temporal dimension

- less efficient to keep the original temporal frame rate
- greatly dilutes motion representations, making the task of reconstructing missing pixels not difficult
- Solution: high mask ratio (90%-95%)

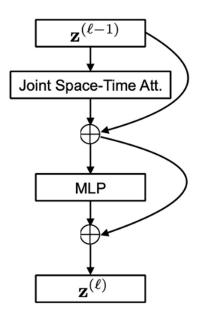
Temporal correlation: inherent correspondence between adjacent frames

- we can reconstruct the masked patches by finding the spatiotemporal corresponding unmasked patches in the adjacent frames
- Solution: tube mask (the masking map is the same for all frames)

VideoMAE Architecture

Stage	Vision Transformer (Base) Output Sizes
data	stride $4 \times 1 \times 1$ on K4 stride $2 \times 1 \times 1$ on SS	$3 \times 16 \times 224 \times 224$
cube	$2 \times 16 \times 16,768$ stride $2 \times 16 \times 16$	768×8×196
mask	tube mask mask ratio = ρ	$768 \times 8 \times [196 \times (1-\rho)]$
encoder	MHA(768) MLP(3072) X	12 $768 \times 8 \times [196 \times (1-\rho)]$
projector	MLP(384) & concat learnable tok	ens 384×8×196
decoder	$\begin{bmatrix} MHA(384) \\ MLP(1536) \end{bmatrix} \times$	4 384×8×196
projector	MLP(1536)	1536×8×196
reshape	from 1536 to $3 \times 2 \times 16$	5×16 3×16×224×224

- Uses the Vit-Base for example
- Tested with Vit-Large and Vit-Huge


Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Details of Vision Transformer model variants

Output sizes are denoted by {C×T×S}

VideoMAE Architecture

- Uses the vanilla ViT backbone
- High proportion of masking ratio
- Joint space-time attention

Experiments

Evaluated on five video datasets:

- Kinetics-400 (240k training videos)
- Something-Something V2 (169k training videos)
- UCF101 (9.5k training videos)
 - Action recognition data set of realistic action videos, collected from YouTube, having 101 action categories
- HMDB51 (3.5k training videos)
 - Human motion recognition dataset with 51 action categories
- AVA
 - A dataset for spatiotemporal localization of human actions (Transfer learning for downstream action detection tasks)

Ablation Study

blocks SSV2 K400 GPU mem.

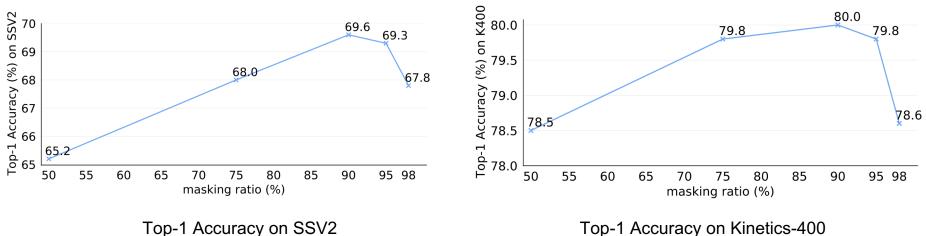
1	68.5	79.0	7.9G
2	69.2	79.2	10.2G
4	69.6	80.0	14.7G
8	69.3	79.7	23.7G

Decoder Depth Choice

case	ratio	SSV2	K400
tube	75	68.0	79.8
tube	90	69.6	80.0
random	90	68.3	79.5
frame	87.5*	61.5	76.5

Mask sampling

case	SSV2	K400
from scratch	32.6	68.8
ImageNet-21k sup.	61.8	78.9
IN-21k+K400 sup.	65.2	-
VideoMAE	69.6	80.0


dataset	method	SSV2	K400
IN-1K	ImageMAE	64.8	78.7
K400	VideoMAE	68.5	80.0
SSV2	VideoMAE	69.6	79.6

- Data-efficient learner
- VideoMAE still obtain a satisfying accuracy on small dataset like HMDB51

dataset	training data	from scratch	MoCo v3	VideoMAE
K400	240k	68.8	74.2	80.0
Sth-Sth V2	169k	32.6	54.2	69.6
UCF101	9.5k	51.4	81.7	91.3
HMDB51	3.5k	18.0	39.2	62.6

Performance on video datasets of different scales

Effectiveness of high masking ratio

Top-1 Accuracy on SSV2

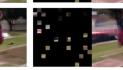
Transfer learning

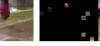
r	nethod	$K400 \rightarrow SSV2$	$\text{K400} \rightarrow \text{UCF}$	$\rm K400 \rightarrow \rm HMDB$
1	MoCo v3	62.4	93.2	67.9
N	VideoMAE	68.5	96.1	73.3

Comparisons with the feature transferability on smaller datasets

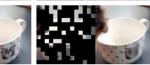
Method	Backbone	Pre-train Dataset	Extra Labels	$T\times \tau$	GFLOPs	Param	mAP
supervised [23]	SlowFast-R101	Kinetics-400	1	8×8	138	53	23.8
CVRL [54]	SlowOnly-R50	Kinetics-400	×	32×2	42	32	16.3
$\rho BYOL_{\rho=3}$ [24]	SlowOnly-R50	Kinetics-400	×	8×8	42	32	23.4
ρ MoCo _{$\rho=3$} [24]	SlowOnly-R50	Kinetics-400	×	8×8	42	32	20.3
MaskFeat ³¹² [80]	MViT-L	Kinetics-400	1	40×3	2828	218	37.5
MaskFeat ³¹² [80]	MViT-L	Kinetics-600	\checkmark	40×3	2828	218	38.8
VideoMAE	ViT-S	Kinetics-400	×	16×4	57	22	22.5
VideoMAE	ViT-S	Kinetics-400	1	16×4	57	22	28.4
VideoMAE	ViT-B	Kinetics-400	×	16×4	180	87	26.7
VideoMAE	ViT-B	Kinetics-400	1	16×4	180	87	31.8
VideoMAE	ViT-L	Kinetics-400	×	16×4	597	305	34.3
VideoMAE	ViT-L	Kinetics-400	1	16×4	597	305	37.0
VideoMAE	ViT-H	Kinetics-400	×	16×4	1192	633	36.5
VideoMAE	ViT-H	Kinetics-400	1	16×4	1192	633	39.5
VideoMAE	ViT-L	Kinetics-700	×	16×4	597	305	36.1
VideoMAE	ViT-L	Kinetics-700	1	16×4	597	305	39.3

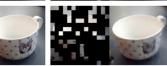
Visual Results





original





mask 90%

mask 95%

original

mask 75%

mask 90%

mask 95%

Comparison with the state-of-the-art meth	ods on Kinetics-400
---	---------------------

Method	Backbone	Extra data	Ex. labels	Frames	GFLOPs	Param	Top-1	Top-5
NL I3D [78]	ResNet101		1	128	359×10×3	62	77.3	93.3
TANet [41]	ResNet152	ImageNet-1K	1	16	$242 \times 4 \times 3$	59	79.3	94.1
TDN_{En} [75]	ResNet101		1	8+16	198×10×3	88	79.4	94.4
TimeSformer [6]	ViT-L		1	96	8353×1×3	430	80.7	94.7
ViViT FE [3]	ViT-L	ImageNet-21K	1	128	3980×1×3	N/A	81.7	93.8
Motionformer [51]	ViT-L	Intagenet-21K	1	32	$1185 \times 10 \times 3$	382	80.2	94.8
Video Swin [39]	Swin-L		1	32	$604 \times 4 \times 3$	197	83.1	95.9
ViViT FE [3]	ViT-L	JFT-300M	1	128	3980×1×3	N/A	83.5	94.3
ViViT [3]	ViT-H	JFT-300M	1	32	3981×4×3	N/A	84.9	95.8
VIMPAC [65]	ViT-L	HowTo100M+DALLE	×	10	$N/A \times 10 \times 3$	307	77.4	N/A
BEVT [77]	Swin-B	IN-1K+DALLE	×	32	$282 \times 4 \times 3$	88	80.6	N/A
MaskFeat ³⁵² [80]	MViT-L	Kinetics-600	×	40	3790×4×3	218	87.0	97.4
ip-CSN [69]	ResNet152		X	32	109×10×3	33	77.8	92.8
SlowFast [23]	R101+NL	no external data	×	16+64	$234 \times 10 \times 3$	60	79.8	93.9
MViTv1 [22]	MViTv1-B		×	32	$170 \times 5 \times 1$	37	80.2	94.4
MaskFeat [80]	MViT-L		×	16	377×10×1	218	84.3	96.3
VideoMAE	ViT-S		X	16	$57 \times 5 \times 3$	22	79.0	93.8
VideoMAE	ViT-B	no external data	×	16	$180 \times 5 \times 3$	87	81.5	95.1
VideoMAE	ViT-L		<u>x</u>	16	$597 \times 5 \times 3$	305	85.2	96.8
VideoMAE	ViT-H		X	16	$1192 \times 5 \times 3$	633	86.6	97.1
VideoMAE ^{†320}	ViT-L	no external data	X	32	3958×4×3	305	86.1	97.3
VideoMAE ^{†320}	ViT-H		×	32	7397×4×3	633	87.4	97.6

Comparison with the state-of-the-art methods on **Something-Something V2**

Method	Backbone	Extra data	Ex. labels	Frames	GFLOPs	Param	Top-1	Top-5
TEINet_{En} [40]	ResNet50 $\times 2$		1	8+16	99×10×3	50	66.5	N/A
$TANet_{En}$ [41]	ResNet50 $\times 2$	ImageNet-1K	1	8+16	99×2×3	51	66.0	90.1
TDN_{En} [75]	ResNet101 $\times 2$		1	8+16	198×1×3	88	69.6	92.2
SlowFast [23]	ResNet101	Kinetics-400	1	8+32	106×1×3	53	63.1	87.6
MViTv1 [22]	MViTv1-B		1	64	$455 \times 1 \times 3$	37	67.7	90.9
TimeSformer [6]	ViT-B	ImageNet-21K	1	8	196×1×3	121	59.5	N/A
TimeSformer [6]	ViT-L		1	64	5549×1×3	430	62.4	N/A
ViViT FE [3]	ViT-L	IN-21K+K400	1	32	995×4×3	N/A	65.9	89.9
Motionformer [51]	ViT-B		1	16	370×1×3	109	66.5	90.1
Motionformer [51]	ViT-L		1	32	$1185 \times 1 \times 3$	382	68.1	91.2
Video Swin [39]	Swin-B		1	32	$321 \times 1 \times 3$	88	69.6	92.7
VIMPAC [65]	ViT-L	HowTo100M+DALLE	×	10	$N/A \times 10 \times 3$	307	68.1	N/A
BEVT [77]	Swin-B	IN-1K+K400+DALLE	×	32	$321 \times 1 \times 3$	88	70.6	N/A
MaskFeat ³¹² [80]	MViT-L	Kinetics-600	\checkmark	40	2828×1×3	218	75.0	95.0
VideoMAE	ViT-B	Kinetics-400	X	16	$180 \times 2 \times 3$	87	69.7	92.3
VideoMAE	ViT-L	Kinetics-400	X	16	597×2×3	305	74.0	94.6
VideoMAE	ViT-S		X	16	_57×2×3_	22	66.8	90.3
VideoMAE	ViT-B	no external data	×	16	$180 \times 2 \times 3$	87	70.8	92.4
<u>VideoMAE</u>	<u>ViT-L</u>		X	16	<u>597×2×3</u>	305	_7 <u>4.3</u>	94.6
VideoMAE	ViT-L		×	32	1436×1×3	305	75.4	95.2

Thank you!