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Obiject Detection

The goal is to predict a set of bounding boxes and category labels for each object
of interest.
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Prior Detectors

Modern detectors address this set prediction task in an indirect way, by defining
surrogate regression and classification problems on a large set of proposals,
anchors, or window centers.

Two-stage detectors predict boxes w.r.t. proposals, whereas single-stage methods
make predictions w.r.t. anchors or a grid of possible object centers.



Prior Detectors

Limitation: Their performances are significantly influenced by postprocessing
steps (non-maximum suppression) to collapse near-duplicate predictions, by the
design of the anchor sets and by the heuristics that assign target boxes to

anchors.

Is it possible to bypass the surrogate tasks and simplify the pipelines?



Prior Detectors

Limitation: Their performances are significantly influenced by postprocessing
steps (non-maximum suppression) to collapse near-duplicate predictions, by the
design of the anchor sets and by the heuristics that assign target boxes to

anchors.

Is it possible to bypass the surrogate tasks and simplify the pipelines?

The authors streamline the training pipeline by viewing object detection as a direct
set prediction problem, predicting the set of detections with absolute box
prediction w.r.t. the input image rather than an anchor.



DETR

The DEtection TRansformer predicts all objects at once, and is trained
end-to-end with a set loss function which performs bipartite matching between

predicted and ground-truth objects.
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DETR

DETR streamlines the detection pipeline,

effectively removing the need for many

hand-designed components, like a non-maximum suppression procedure or
anchor generation that explicitly encode prior knowledge about the task.

.-~ _.-- no object (o)

’ 27 R
‘s
s s
‘s
’

no object (o)

transformer
encoder-
decoder

| s
7 /’

’ ’

U

g
0

set of image features

set of box predictions

bipartite matching loss



DETR

Unlike most existing detection methods, DETR doesn’t require any customized
layers, and thus can be reproduced easily in any framework that contains

standard CNN and transformer classes.
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Previous works
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Class Bounding Box
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The set prediction loss
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This optimal assignment is computed
efficiently with the Hungarian algorithm



Experimental Results



Baseline Architectures

e Backbone network
o ResNet-50 (pre-trained from ImageNet)
o ResNet-101 (pre-trained from ImageNet)

. Kernel size: 3 X 3 Kernel size: 3 X 3 Kernel size: 3 X 3
e Object Detectors =)
o Faster R-CNN (Proposal-based) @
o RetinaNet (Anchor-based)
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Evaluation Results on COCO Dataset

Model GFLOPS/FPS | #params| AP |APs59 AP75 APg AP); APj
RetinaNet 205/18 38M 38.7 |58.0 (41.5 [23.3 |42.3 |50.3
Faster RCNN-DC5 320/16 166M 39.0 |60.5 (42.3 |21.4 |43.5 |52.5
Faster RCNN-FPN 180/26 42M 40.2 |61.0 [43.8 |24.2 |43.5 |52.0
Faster RCNN-R101-FPN  246/20 60M 42.0 |62.5 [45.9 |25.2 |45.6 |54.6
RetinaNet+ 205/18 38M 41.1 |60.4 |43.7 |25.6 |44.8 |53.6
Faster RCNN-DC5+ 320/16 166 M 41.1 |61.4 [44.3 |22.9 |45.9 |55.0
Faster RCNN-FPN+ 180/26 42M 42.0 |62.1 |[45.5 |26.6 |[45.4 |53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M 42.0 |162.4 [44.2 |20.5 |45.8 |61.1
DETR-DC5 187/12 41M 43.3 [63.1 (45.9 |225 |47.3 |61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

‘“+’ means longer training, GloU loss, and crop augmentation




Evaluation Results on COCO Dataset (contd.)

Model GFLOPS/FPS | #params| AP |APs59 AP75 APg AP); APj
RetinaNet 205/18 38M 38.7 |58.0 (41.5 [23.3 |42.3 |50.3
Faster RCNN-DC5 320/16 166M 39.0 |60.5 (42.3 |21.4 |43.5 |52.5
Faster RCNN-FPN 180/26 42M 40.2 |61.0 [43.8 |24.2 |43.5 |52.0
Faster RCNN-R101-FPN  246/20 60M 42.0 |62.5 [45.9 |25.2 |45.6 |54.6
RetinaNet+ 205/18 38M 41.1 |60.4 |43.7 |25.6 |44.8 |53.6
Faster RCNN-DC5+ 320/16 166 M 41.1 |61.4 [44.3 |22.9 |45.9 |55.0
Faster RCNN-FPN+ 180/26 42M 42.0 |62.1 |[45.5 |26.6 |[45.4 |53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0
DETR 86 /28 41M 42.0 |162.4 |44.2 |20.5 |45.8 |61.1
DETR-DC5 187/12 41M 43.3 [63.1 (45.9 |225 |47.3 |61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

‘“+’ means longer training, GloU loss, and crop augmentation




Evaluation Results on COCO Dataset (contd.)
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Model GFLOPS/FPS | #params| AP |APs59 AP75 APg AP); APj
RetinaNet 205/18 38M 38.7 |58.0 (41.5 [23.3 |42.3 |50.3
Faster RCNN-DC5 320/16 166M 39.0 |60.5 (42.3 |21.4 |43.5 |52.5
Faster RCNN-FPN 180/26 42M 40.2 |61.0 [43.8 |24.2 |43.5 |52.0
Faster RCNN-R101-FPN  246/20 60M 42.0 |62.5 [45.9 |25.2 |45.6 |54.6
RetinaNet+ 205/18 38M 41.1 |60.4 |43.7 |25.6 |44.8 |53.6
Faster RCNN-DC5+ 320/16 166 M 41.1 |61.4 [44.3 |22.9 |45.9 |55.0
Faster RCNN-FPN+ 180/26 42M 42.0 |162.1 |45.5 |26.6 |45.4 |53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M 42.0 |162.4 [44.2 |20.5 |45.8 |61.1
DETR-DC5 187/12 41M 43.3 [63.1 (45.9 |225 |47.3 |61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

‘“+’ means longer training, GloU loss, and crop augmentation




Efficacy of Encoder Module

self-attention(430, 600) self-attention(450, 830)

self-attention(520, 450) self-attention(440, 1200)




Efficacy of Decoder Module
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Visualizing the Decoder Attention

T§

.. A\ I o
(0

o ’
s 4 \
B ]

-




Extension: Panoptic Segmentation

Encoded image Resnet features
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Panoptic Results on COCO Dataset

Model Backbone PQ SQ RQ PQ'™ sQtt RQ!* PQst SQst RQSt AP
PanopticFPN++ R50 42.4 79.3 51.6 49.2 824 58.8 32.3 T4.8 40.6 37.7
UPSnet R50 42.5 78.0 52.5 486 79.4 59.6 33.4 75.9 41.7 34.3
UPSnet-M R50 43.0 79.1 52.8 48.9 79.7 59.7 34.1 78.2 42.3 34.3
PanopticFPN++ R101 44.1 79.5 53.3 51.0 83.2 60.6 33.6 74.0 42.1 39.7
DETR R50 43.4 79.3 53.8 482 79.8 59.5 36.3 78.5 45.3 31.1
DETR-DC5 R50 44.6 79.8 55.0 49.4 80.5 60.6 37.3 78.7 46.5 31.9
DETR R101 45.1 79.9 55.5 50.5 80.9 61.7 37.0 78.5 46.0 33.0

DETR-DC5 R101 45.6 80.0 56.1 50.9 80.9 62.2 37.5 78.6 46.8 33.1




Panoptic Visualization
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Conclusions

e DETR incorporates the transformer and bipartite matching loss for object

detection task

o It achieves comparable results to an optimized Faster R-CNN baseline on the challenging
COCO dataset
o Itis easily extensible to panoptic segmentation with competitive results

e Although DETR performs significantly better on large objects, it cannot deliver

similar improvement on small objects
o ltis left as a future work



