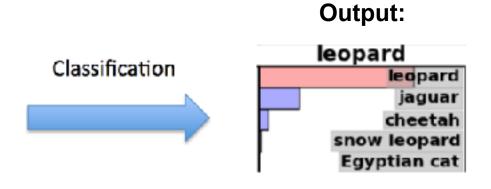
Class Updates

- Paper assignments posted <u>online</u>.
- Student paper presentations will begin on Monday, January 29th (a week from today).
- All paper presentations (except for paper battles) shortened to ~30min to give more time for a discussion.
- Project team members list due on January 31st, 11:59pm.

Image Classification

• The goal is to identify the category of a given image.

Input:



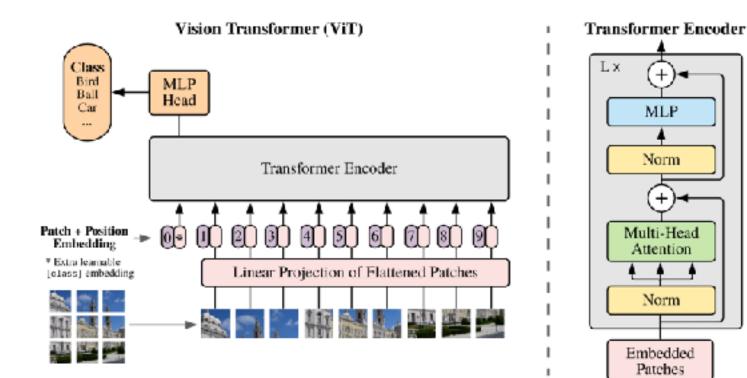
Training data-efficient image transformers & distillation through attention

ICML 2021

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou

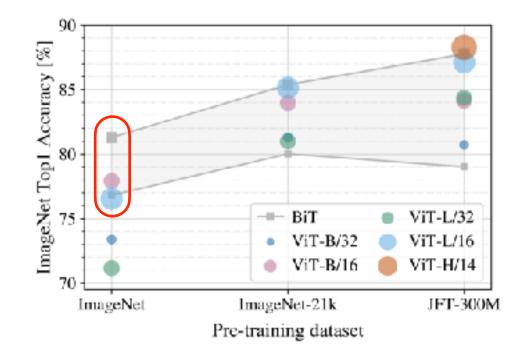
Vision Transformer (ViT)

- The authors split an image into fixed-size patches, linearly embed each of them, and add position embeddings.
- The resulting sequence of vectors is then fed into a standard Transformer encoder.



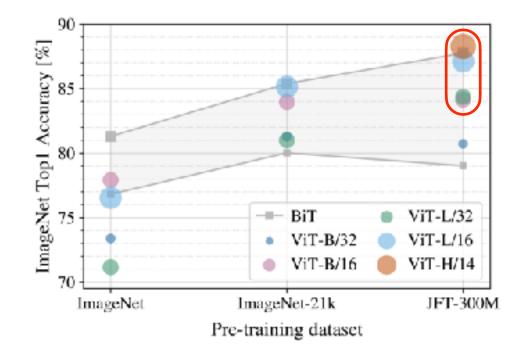
Pre-training Data Requirements

- The ViT models are pre-trained on datasets of increasing size: ImageNet, ImageNet-21k, and JFT300M.
- ImageNet accuracy is reported after finetuning on ImageNet.



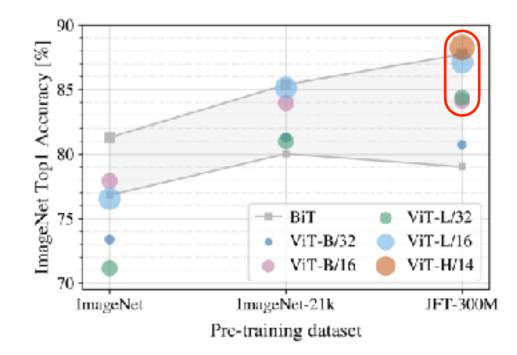
Pre-training Data Requirements

- The ViT models are pre-trained on datasets of increasing size: ImageNet, ImageNet-21k, and JFT300M.
- ImageNet accuracy is reported after finetuning on ImageNet.



Pre-training Data Requirements

- The ViT models are pre-trained on datasets of increasing size: ImageNet, ImageNet-21k, and JFT300M.
- ImageNet accuracy is reported after finetuning on ImageNet.



Can we effectively train ViTs on medium-sized datasets?

Goals

1. To design a data-efficient transformer trained only on ImageNet (eliminating JFT or ImageNet-21K pretraining).

Goals

1. To design a data-efficient transformer trained only on ImageNet (eliminating JFT or ImageNet-21K pretraining).

2. Instead of using hundreds of GPUs/TPUs, use a single GPU node/machine.

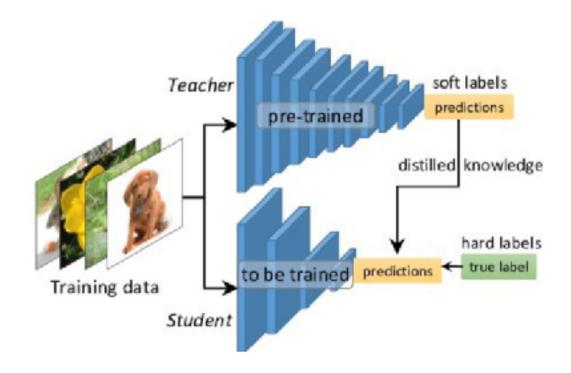
Goals

1. To design a data-efficient transformer trained only on ImageNet (eliminating JFT or ImageNet-21K pretraining).

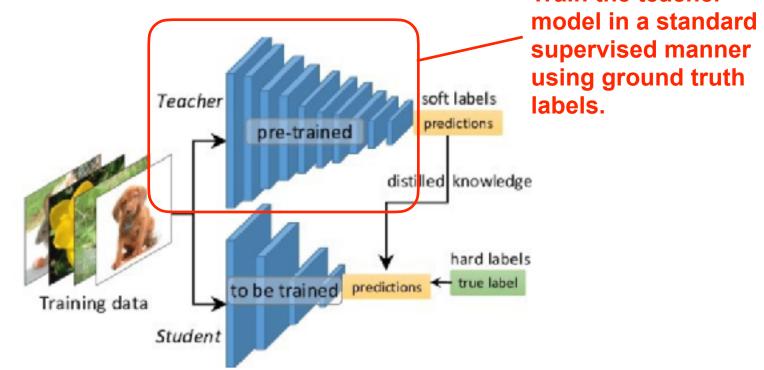
2. Instead of using hundreds of GPUs/TPUs, use a single GPU node/machine.

3. Achieve competitive image classification performance on par or even better than the standard ViT.

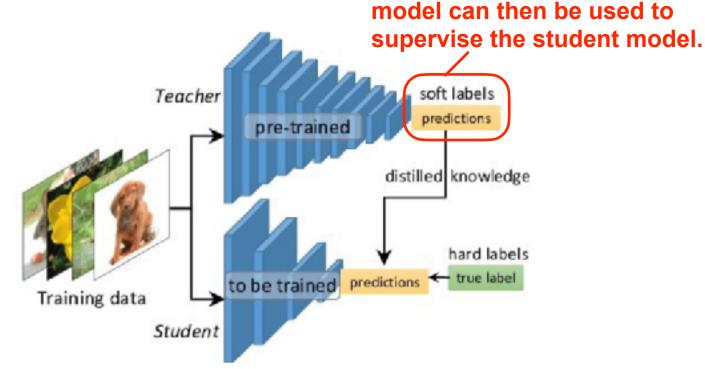
 Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.



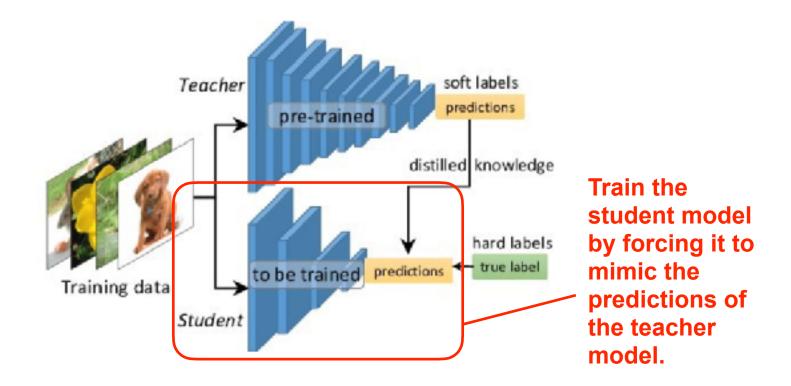
 Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.
 Train the teacher



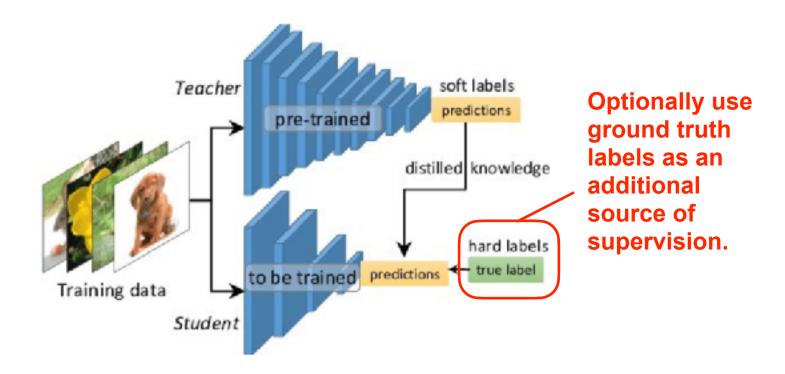
Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.
 The outputs of the teacher



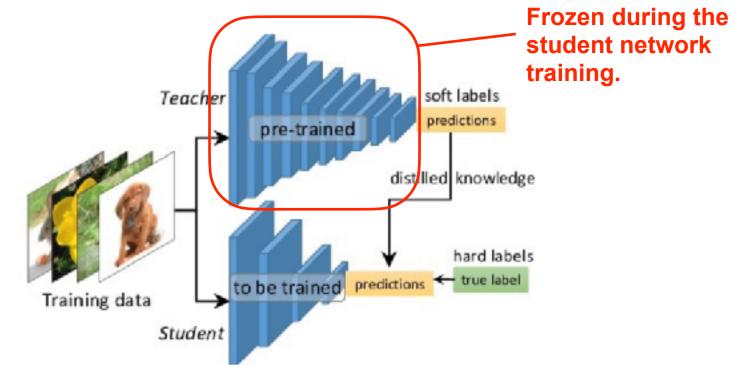
 Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.



 Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.



 Knowledge distillation refers to the idea of using a pretrained network to supervise another smaller/less powerful network.



 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

 $\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

$$\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$$

Standard supervised cross-entropy loss

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

$$\mathcal{L}_{global} = (1 - \lambda) \mathcal{L}_{CE}(\psi(Z_s), y) + \lambda \tau^2 \mathrm{KL}(\psi(Z_s/\tau), \psi(Z_t/\tau))$$

Ground truth labels

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

 $\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$ The logits of the student model The softmax function

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

$$\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$$

Soft distillation objective

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

 $\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$ The softmax function The logits of the teacher model

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

 $\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$ The softmax function The logits of the student model

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

$$\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$$

the temperature for the distillation

 Soft distillation minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model.

$$\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$$

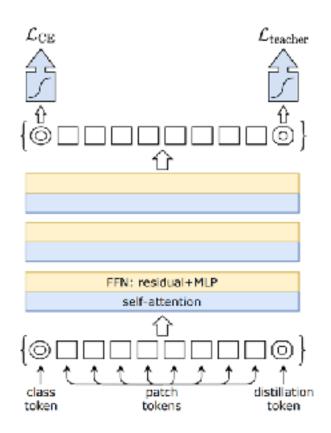
The coefficient balancing the KL divergence loss and the cross-entropy loss

Hard Distillation Objective

• Hard distillation uses the hard decision of the teacher as a supervisory signal to the student model.

DeiT Architecture

• The authors include a new distillation token, which interacts with the class and patch tokens through self-attention layers.



DeiT Architecture Variants

• Summary of the Data-efficient image Transformer (DeiT) architectures considered in this paper.

Model	embedding dimension	#heads	#layers	#params	training resolution	throughput (im/sec)
DeiT-Ti	192	3	12	5M	224	2536
DeiT-S	384	6	12	22M	224	940
DeiT-B	768	12	12	86M	224	292

• ImageNet-1k top-1 accuracy of the student as a function of the teacher model used for distillation.

Teacher					
Models	acc.	pretrain	†384		
DeiT-B	81.8	81.9	83.1		
RegNetY-4GF	80.0	82.7	83.6		
RegNetY-8GF	81.7	82.7	83.8		
RegNetY-12GF	82.4	83.0	83.9		
RegNetY-16GF	82.9	83.0	84.0		

• ImageNet-1k top-1 accuracy of the student as a function of the teacher model used for distillation.

Teacher					
Models	acc.	pretrain	↑384		
DeiT-B	81.8	81.9	83.1		
RegNetY-4GF	80.0	82.7	83.6		
RegNetY-8GF	81.7	82.7	83.8		
RegNetY-12GF	82.4	83.0	83.9		
RegNetY-16GF	82.9	83.0	84.0		

Image transformers learn more from a CNN than from another transformer with comparable performance

• Distillation experiments on ImageNet-1k with DeiT, 300 epochs of pre-training.

	sup	ervision	ImageNet top-1 (%)			
DeiT: method \downarrow	label	teacher	Ti 224	S 224	B 224	B†384
no distillation	1	X	72.2	79.8	81.8	83.1
usual distillation	×	soft	72.2	79.8	81.8	83.2
hard distillation	×	hard	74.3	80.9	83.0	84.0
class embedding	1	hard	73.9	80.9	83.0	84.2
distil. embedding	1	hard	74.6	81.1	83.1	84.4
DeiTa: class+distil.	1	hard	74.5	81.2	83.4	84.5

• Distillation experiments on ImageNet-1k with DeiT, 300 epochs of pre-training.

	sup	ervision	ImageNet top-1 (%)				
DeiT: method \downarrow	label	teacher	Ti 224	S 224	B 224	B†384	
no distillation	1	X	72.2	79.8	81.8	83.1	
usual distillation	X	soft	72.2	79.8	81.8	83.2	
hard distillation	×	hard	74.3	80.9	83.0	84.0	
class embedding	1	hard	73.9	80.9	83.0	84.2	
distil. embedding	1	hard	74.6	81.1	83.1	84.4	
DeiTa: class+distil.	1	hard	74.5	81.2	83.4	84.5	

• Distillation experiments on ImageNet-1k with DeiT, 300 epochs of pre-training.

	sup	ervision	ImageNet top-1 (%)				
DeiT: method \downarrow	label	teacher	Ti 224	S 224	B 224	B†384	
no distillation	1	×	72.2	79.8	81.8	83.1	
usual distillation	X	soft	72.2	79.8	81.8	83.2	
hard distillation	×	hard	74.3	80.9	83.0	84.0	
class embedding	1	hard	73.9	80.9	83.0	84.2	
distil. embedding	1	hard	74.6	81.1	83.1	84.4	
DeiT: class+distil.	1	hard	74.5	81.2	83.4	84.5	

• Distillation experiments on ImageNet-1k with DeiT, 300 epochs of pre-training.

	sup	ervision	ImageNet top-1 (%)			
DeiT: method \downarrow	label	teacher	Ti 224	S 224	B 224	B†384
no distillation	1	X	72.2	79.8	81.8	83.1
usual distillation	×	soft	72.2	79.8	81.8	83.2
hard distillation	×	hard	74.3	80.9	83.0	84.0
class embedding	1	hard	73.9	80.9	83.0	84.2
distil. embedding	1	hard	74.6	81.1	83.1	84.4
DeiTa: class+distil.	1	hard	74.5	81.2	83.4	84.5

Hard distillation outperforms standard supervision and standard soft distillation.

• Distillation experiments on ImageNet-1k with DeiT, 300 epochs of pre-training.

	supe	ervision	ImageNet top-1 (%)				
DeiT: method \downarrow	label	teacher	Ti 224	S 224	B 224	B†384	
no distillation	1	x	72.2	79.8	81.8	83.1	
usual distillation	X	soft	72.2	79.8	81.8	83.2	
hard distillation	X	hard	74.3	80.9	83.0	84.0	
class embedding	✓	hard	73.9	80.9	83.0	84.2	
distil. embedding	1	hard	74.6	81.1	83.1	84.4	
DeiTa: class+distil.	1	hard	74.5	81.2	83.4	84.5	

The newly added distillation token leads to improved accuracy.

Data Augmentations

- Mixup
- CutMix
- Random Erasing

Mixup

• Mixup mixes two samples by interpolating both the image and labels.

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

Input Image:

Label: Dog 0.5 Cat 0.5

Zhang et al., "MIXUP: BEYOND EMPIRICAL RISK MINIMIZATION", ICLR 2018

CutMix

- Patches are cut and pasted among training images.
- The ground truth labels are also mixed proportionally to the area of the patches.

$$\begin{split} & ilde{x} = \mathbf{M} \odot x_A + (\mathbf{1} - \mathbf{M}) \odot x_B \ & ilde{y} = \lambda y_A + (1 - \lambda) y_B, \end{split}$$

where $\mathbf{M} \in \{0, 1\}^{W \times H}$ denotes a binary mask indicating where to drop out and fill in from two images

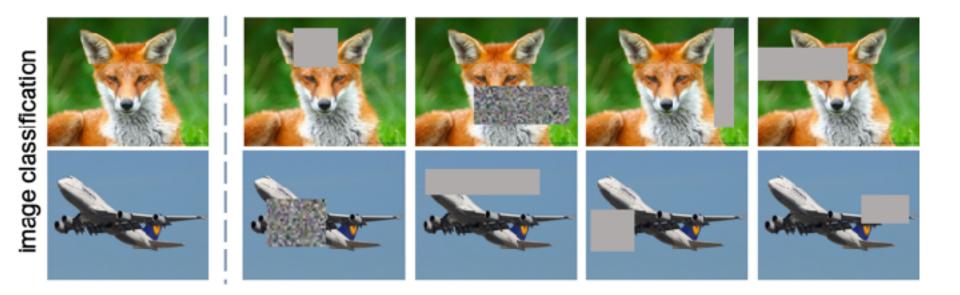
Input Image:

Label: Dog 0.6 Cat 0.4

Yun et al., "CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features", ICCV 2019

Random Erasing

- Randomly choosing a rectangle region in the image and erase its pixels.
- Images with various levels of occlusion are generated.



Zhong et al., "Random Erasing Data Augmentation", AAAI 2020

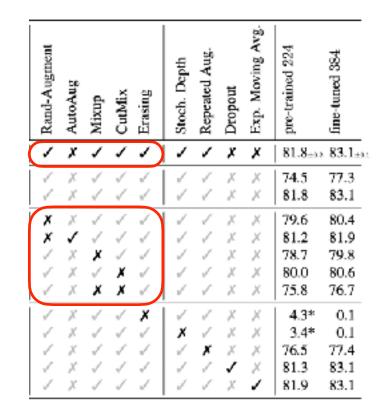
Ablation Experiments

• Ablation study on data augmentations and regularization schemes evaluated on ImageNet.

Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 224	fine-tuned 384
1	x	1	1	1	1	1	x	×	81.8±32	83.1±x
1	Х	\checkmark	\swarrow	1	17	\checkmark	Х	×	74.5	77.3
1	х	1	1	1	1	1	X	Х.	81.8	83.1
×	X	\checkmark	\swarrow	1	1	1	Х	X	79.6	80.4
×	✓	\checkmark	\checkmark	1	1	1	X	×	81.2	81.9
1	х	×	1	1	1	1	X,	X	78.7	79.8
1	Х	1	×	1	1	1	X	X	80.0	80.6
1	Х	×	×	1	1	\checkmark	Х	×	75.8	76.7
1	х	1	1	×	1	1	Х	×	4.3*	0.1
1	Х	\checkmark		1	X	1	X	X	3.4*	0.1
1	X	1	\checkmark	1	1	×	X	×	76.5	77.4
1	X	\checkmark	\checkmark	1	1	\checkmark	1	×	81.3	83.1
1	х	1	1	1	1	1	X,	1	81.9	83.1

Ablation Experiments

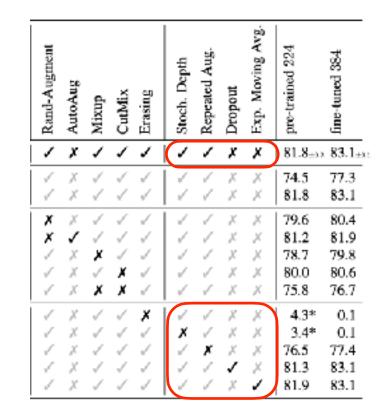
• Ablation study on data augmentations and regularization schemes evaluated on ImageNet.



Most data augmentations lead to significant boost in performance.

Ablation Experiments

• Ablation study on data augmentations and regularization schemes evaluated on ImageNet.



Several regularization schemes boost performance as well.