Fast Online Object Tracking and Segmentation: A Unifying Approach

Alessandro, Vish, and Mel

Table of content

- Motivation
- What's done before
- Architecture
- Results

Key terms

- Visual Object Tracking
 - Draw bounding box on object of interest in a scene
- Video Object Segmentation (VOS)
 - Draw a binary pixel mask over the scene indicating if the object is contained in the pixel
 - Historically more computationally expensive
 - Yeo et al. only manages 4fps and 0.1fps using CNN features

Motivations

- Success of fast-tracking approaches based on convolutional Siamese networks
- The availability of Youtube-VOS, a dataset of 4,000+ videos with pixel-level annotations on 70+ common objects

SiamFC - Bertinetto et al.

- Siamese network uses shared convolutional weights
- Compares features via cross-correlation function producing similarity "heat map"
- x is centered at last known location of object
- Maximum cross-correlation (response) per candidate window indicates match

SiamFC - Continued

- Used fixed bounding box sizes
- Scale issues were addressed with rescaled exemplar images

How can we draw an appropriately shaped bounding box from this information?

SiamRPN - Li et al.

- Also for object tracking
- Finds optimal aspect ratios of bounding boxes for *k* anchors
 - Aspect ratios are hyperparameters
- Classification and regression branches identify object presence and optimal bounding box in candidate window respectively

SiamRPN - continued

- Anchors are centered in candidate window
- For regression branch, several aspect ratios and scales are explored—a proposal
 - Each with corresponding offset (dx, dy, dw, dh)
- For classification branch, each RoW

SiamRPN - Continued

• Only produced bounding box...

How can we draw a pixel mask from this information?

SiamMask Architecture elements

- Extra branch and loss is essential for encoding the information necessary to produce a pixel-wise binary mask.

Architecture elements

 It predicts w×h binary masks (one for each RoW) using a simple two-layers neural network hφ with learnable parameters φ. Let mn denote the predicted mask corresponding to the n-th RoW

$$m_n = h_\phi(g^n_\theta(z, x)).$$

Loss function

- each RoW is labelled with a ground-truth binary label yn ∈ {±1} and also associated with a pixel-wise ground-truth mask cn of size w×h
- Binary logistic regression loss over all RoWs

$$\mathcal{L}_{mask}(\theta, \phi) = \sum_{n} (\frac{1+y_n}{2wh} \sum_{ij} \log(1+e^{-c_n^{ij}m_n^{ij}})).$$

Architecture elements

- ResNet-50 until final convolutional layer of the 4th stage (stride 1 and dilated convolutions). No downsampling in conv4.
- Depth-wise cross correlated output features resulting in a feature map of size 17x17.

block	score	box	mask		
conv5	1 × 1, 256	1 × 1, 256	1 × 1, 256		
conv6	$1 \times 1, 2k$	$1 \times 1, 4k$	$1 \times 1, (63 \times 63)$		

Table 9. Architectural details of the *three-branch* head. k denotes the number of anchor boxes per RoW.

block	score	mask
conv5	$1 \times 1,256$	$1 \times 1,256$
conv6	1 × 1, 1	1×1 , (63 × 63)

Table 10. Architectural details of the *two-branch* head.

Training

- Examplar and search image patches of 127×127 and 255×255 pixels respectively.
- Pre-trained on the ImageNet-1k classification task.
- SGD with a first warmup phase in which the learning rate increases linearly from 10-3 to 5×10-3 for the first 5 epochs and then decreases logarithmically until 5×10-4 for 15 more epochs.
- Datasets: COCO, ImageNet-VID and YouTube-VOS.
- It selects the output mask using the location attaining the maximum score in the classification branch.

Architecture

(b) two-branch variant head

Results - Visual Object Tracking

- VOT-2016 for representation types comparison
- VOT-2018 for state-of-the-art comparison
- How much does object representation matter?

	mIOU (%)	mAP@0.5 IOU	mAP@0.7 IOU
Fixed a.r. Oracle	73.43	90.15	62.52
Min-max Oracle	77.70	88.84	65.16
MBR Oracle	84.07	97.77	80.68
SiamFC [3]	50.48	56.42	9.28
SiamRPN [63]	60.02	76.20	32.47
SiamMask-Min-max	65.05	82.99	43.09
SiamMask-MBR	67.15	85.42	50.86
SiamMask-Opt	71.68	90.77	60.47

Results - Visual Object Tracking

• Results on VOT-2018 and VOT-2016

	SiamMask-Opt	SiamMask	SiamMask-2B	DaSiamRPN [6	3] SiamRPN [28]	SA_Siam_R [15]	CSRDCF [33	3] STRCF [29]
EAO 🕇	0.387	0.380	0.334	0.326	0.244	0.337	0.263	0.345
Accuracy ↑	0.642	0.609	0.575	0.569	0.490	0.566	0.466	0.523
Robustness \downarrow	0.295	0.276	0.304	0.337	0.460	0.258	0.318	0.215
Speed(fps)↑	5	55	60	160	200	32.4	48.9	2.9

Table 2. Comparison with the state-of-the-art under the EAO, Accuracy, and Robustness metrics on VOT-2018.

	v v	OT-201	8	V			
	EAO ↑	A 🕇	R↓	EAO ↑	A 🕇	R↓	Speed
SiamMask-box	0.363	0.584	0.300	0.412	0.623	0.233	76
SiamMask	0.380	0.609	0.276	0.433	0.639	0.214	55
SiamMask-Opt	0.387	0.642	0.295	0.442	0.670	0.233	5

Results - Video Object Segmentation

Can operate online, runs in real-time, and only requires a simple bounding box initialisation

Results - Video Object Segmentation

- FT Finetuned M - Mask
- J Jaccard index

F - F-measure

- Test on DAVIS-2016, DAVIS-2017, and Youtube-VOS
- Extract axis-aligned bounding box from the mask

	FΤ	М	$\mathcal{J}_{\mathcal{M}\uparrow}$	$\mathcal{J}_{\mathcal{O}\uparrow}$	$\mathcal{J}_{\mathcal{D}\downarrow}$	$\mathcal{F}_{\mathcal{M}\uparrow}$	$\mathcal{F}_{\mathcal{O}\uparrow}$	$\mathcal{F}_{\mathcal{D}\downarrow}$	Speed
OnAVOS [53]	~	~	86.1	96.1	5.2	84.9	89.7	5.8	0.08
MSK [39]	~	r	79.7	93.1	8.9	75.4	87.1	9.0	0.1
MSK _b [39]	~	×	69.6	-	-	-	-	-	0.1
SFL [9]	r	r	76.1	90.6	12.1	76.0	85.5	10.4	0.1
FAVOS [8]	×	r	82.4	96.5	4.5	79.5	89.4	5.5	0.8
RGMP [57]	×	r	81.5	91.7	10.9	82.0	90.8	10.1	8
PML [7]	×	r	75.5	89.6	8.5	79.3	93.4	7.8	3.6
OSMN [59]	×	r	74.0	87.6	9.0	72.9	84.0	10.6	8.0
PLM [62]	×	r	70.2	86.3	11.2	62.5	73.2	14.7	6.7
VPN [22]	×	r	70.2	82.3	12.4	65.5	69.0	14.4	1.6
SiamMask	×	×	71.7	86.8	3.0	67.8	79.8	2.1	55

Table 4. Results on DAVIS 2016 (validation set). FT and M respectively denote if the method requires fine-tuning and whether it is initialised with a mask (\checkmark) or a bounding box (\bigstar).

	FΤ	М	$\mathcal{J}_{\mathcal{M}\uparrow}$	$\mathcal{J}_{\mathcal{O}\uparrow}$	$\mathcal{J}_{\mathcal{D}\downarrow}$	$\mathcal{F}_{\mathcal{M}\uparrow}$	$\mathcal{F}_{\mathcal{O}\uparrow}$	$\mathcal{F}_{\mathcal{D}\downarrow}$	Speed
OnAVOS [53]	~	~	61.6	67.4	27.9	69.1	75.4	26.6	0.1
OSVOS [5]	~	r	56.6	63.8	26.1	63.9	73.8	27.0	0.1
FAVOS [8]	×	r	54.6	61.1	14.1	61.8	72.3	18.0	0.8
OSMN [<mark>59</mark>]	×	r	52.5	60.9	21.5	57.1	66.1	24.3	8.0
SiamMask	x	×	54.3	62.8	19.3	58.5	67.5	20.9	55

Table 5. Results on DAVIS 2017 (validation set).

	FΤ	М	$\mathcal{J}_{\mathcal{S}\uparrow}$	$\mathcal{J}_{\mathcal{U}\uparrow}$	$\mathcal{F}_{\mathcal{S}\uparrow}$	$\mathcal{F}_{\mathcal{U}\uparrow}$	$\mathcal{O}\uparrow$	Speed
OnAVOS [53]	~	~	60.1	46.6	62.7	51.4	55.2	0.1
OSVOS [5]	~	•	59.8	54.2	60.5	60.7	58.8	0.1
OSMN [59]	×	~	60.0	40.6	60.1	44.0	51.2	8.0
SiamMask	x	x	60.2	45.1	58.2	47.7	52.8	55

Table 6. Results on YouTube-VOS (validation set).

Ablation studies

AN = Alex Net

RN = ResNet-50 proposed

w/o R = without final refinement

	AN	RN	EAO ↑	$\mathcal{J}_{\mathcal{M}\uparrow}$	$\mathcal{F}_{\mathcal{M}\uparrow}$	Speed			
SiamFC	~		0.188	-	-	86			
SiamFC		~	0.251	-	-	40			
SiamRPN	~		0.243	-	-	200			
SiamRPN		~	0.359	-	-	76			
SiamMask-2B w/o R		~	0.326	62.3	55.6	43			
SiamMask w/o R		~	0.375	68.6	57.8	58			
SiamMask-2B-score		~	0.265	-	-	40			
SiamMask-box		~	0.363	-	-	76			
SiamMask-2B		~	0.334	67.4	63.5	60			
SiamMask		~	0.380	71.7	67.8	55			
Table 7 Abletion studies on VOT 2019 and DAVIG 2016									

Table 7. Ablation studies on VOT-2018 and DAVIS-2016.

Failure cases

Figure 5. Failure cases: motion blur and "non-object" instance.