Image: Constant of the second secon

Understanding Complex Human Activities in Long Videos

Gedas Bertasius EPIC @ CVPR'22 06-20-2022

 The ultimate goal of my research is to build computer vision models for understanding human behavior.

(1) multiple modalities (2) over long temporal extent.

i) Multimodal Perception

To develop a personalized AI assistant, we need systems that can reason about

ii) Long-range Video Understanding

 Instead, most modern video models span only a few seconds.

Cartwheeling

Instead, most modern video models operate on manually trimmed videos that

Braiding Hair

Learning To Recognize Procedural Activities with Distant Supervision

Xudong Lin Fabio Petroni

·····

Gedas Bertasius

CVPR 2022

Marcus Rohrbach

Shih-Fu Chang

Lorenzo Torresani

																	1
																	•
																	•
																	•
	*		*	**								•					
	*	**	*	**			**										
	***	***	***	***	***	***	***	***	***	***	***	***	***	***	**	**	
	÷	÷	÷	÷	÷	÷	÷	÷	÷	*	*	÷	*	÷	÷	÷	
	1	ł	ł	1	1	1	1	1	*	1	*	*	***	***	***	***	
	ł	Ī	Ī	ł	ł	ł	ł	Ī	i	ł	i	i	i	i	i	÷	
	:	ł	ł	ł	:	:	ł	ł	ł	ł	ł	:	:	1	ł	:	ļ
	ž	ž	ž	ž	ž	Ī	Ī	Ī	į	ž	Ī	Ī	Ī	Ī	Ī	Ī	ł
	ł	ŧ	ŧ	÷	ł	ŧ	ŧ	ŧ	ŧ	ł	ł	Ì	ł	Ì	į	į	
	ł	ž	ž	ł	ł	ł	ž	ž	ž	ł	Ī	ž	ž	ž	ž	ž	
	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	÷	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	÷	÷	÷	ł
	ł	ž	ž	ł	ł	ł	ł	ł	ž	ł	ł	ł	ł	ł	ž	ł	ļ
	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	
	*	*	*	*	*	*	*	*	*	ł	ł	*	*	*	*	*	
	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	
•	*	ł	*	:	:	:	*	*	:	*	:	ł	:	*	ž	*	
		Ş	ž	ž	ž	ž	ł	ž	ž	ž	ž	ž	ž	ž	ž	ž	
		ł	ŧ	Ì	÷	Ì	ŧ	÷	ŧ	÷	Ż	ŧ	Ż	ŧ	ž	ŧ	
		k	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	
		ł	Ì	Ì	Ì	Ì	Ì	Ì	Ì	Ì	į	Ì	Ì	÷	÷	÷	
		-		*	*	***	***			***	***	***	***	***	***	***	
		-	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	•	
		-	***	***	***	***	***	***	***			***					
		-	•	•	•	•	*	•	•	•	•	•	•	•	•	•	

		-	÷	÷	÷	÷	i	÷	÷	i	i	÷	÷	÷	÷	÷	
				••••	••••	••••	••••	••••	••••	••••	•		•••••	•	***		
	:	ł	:	:	•	•	•	•	•	**	•	••••	**	•	**	**	
	***											***	***	***	* * *	* * *	
	**	*	**	**	**	**	**	*	*	**		**		**			
	* * *	* * *	* * *	* * *	* * *		* * *	* * *	* * *	* * *	* * *	* * *	* * *				
	***	***	***		***												
																	•
																	•
																	•
																	•

• Imagine that you are preparing a complex meal (e.g., Beef Wellington).

Motivation

• Imagine that you are preparing a complex meal (e.g., Beef Wellington).

Motivation

Step 1: Searing the fillet mignon.

Imagine that you are preparing a complex meal (e.g., Beef Wellington).

Motivation

Step 2: Frying the mushrooms until they are dried.

Imagine that you are preparing a complex meal (e.g., Beef Wellington).

Step 2

Step 1

Motivation

Umm, what is the next step?

• Imagine that you are preparing a complex meal (e.g., Beef Wellington).

Step 2

Step 1

Motivation

see you have done:

Step 1: Searing the fillet mignon to brown.

Step 2: Frying the mushrooms until they are dried.

You are preparing <u>Beef Wellington!</u> The next step is: **Step 3:** Shingle the prosciutto on the plastic wrap and spread the mushrooms over the prosciutto.

scalable.

Insert the window mounting bolts.

Tighten the screws.

Motivation

Manually annotating individual steps in a long procedural video is costly and not

Connect the exhaust hose that came with the portable air conditioner to the air conditioning unit.

Plug the electrical cord into a proper electrical outlet.

Prior Work

 Learning a video representation from the automatically transcribed speech narrations in instructional videos.

[1] Miech et al. "HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips," ICCV 2019 [2] Miech et al. "End-to-End Learning of Visual Representations from Uncurated Instructional Videos," CVPR 2020

Noise in ASR

Automatically transcribed speech narrations can be very noisy.

conditioner locate

conditioner has been

WikiHow Knowledge Base

• WikiHow is a crowdsourced multimedia repository containing over 230,000 "how-to" articles.

Let sit before serving. Allow the salmon to sit off the grill and in their foil packets at 24 room temperature for 5 minutes, then serve.

several times to coat all sides of the salmon.

knowledge base.

To address this issue, we leverage the distant supervision of a textual WikiHow

knowledge base.

To address this issue, we leverage the distant supervision of a textual WikiHow

knowledge base.

mounting bolts.

To address this issue, we leverage the distant supervision of a textual WikiHow

knowledge base.

To address this issue, we leverage the distant supervision of a textual WikiHow

engage and install the other end to the back of the air conditioner locate

Connect the exhaust conditioner to the air conditioning unit.

 To assign a pseudo step-description label to each video segment, we use a textual similarity measure.

 $P(y_s^{(t)}|x_l) \approx \frac{\exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}{\sum_{t,s} \exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}.$

 To assign a pseudo step-description label to each video segment, we use a textual similarity measure.

A video segment I from an Language-based description instructional video x. of step s for task t. $P(y_s^{(t)}|x_l) \approx \frac{\exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}{\sum_{t,s} \exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}.$

 To assign a pseudo step-description label to each video segment, we use a textual similarity measure.

> ASR associated with Language-based description a video segment l. of step s for task t.

Normalized dot product similarity. $P(y_s^{(t)}|x_l) \approx \frac{\exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}{\sum_{t,s} \exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}.$

 To assign a pseudo step-description label to each video segment, we use a textual similarity measure.

 $P(y_s^{(t)}|x_l) \approx \frac{\exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}{\sum_{t,s} \exp\left(\mathcal{S}(a_l, y_s^{(t)})\right)}.$ Normalization over similarities w.r.t. all step descriptions for all tasks.

Learning Step Embeddings

distributions.

We minimize the KL-Divergence between the predicted distribution and target

Pretraining is done on HowTo100M.

a) HowTo100M

Evaluation is done on COIN, Breakfast and EPIC-Kitchens.

Experimental Results

c) Breakfast

d) EPIC-Kitchens

 Comparing different forms of supervision on COIN procedural activity classification task.

HT100M, Task Labels + Distant Superv.
HT100M, MIL-NCE with ASR
HT100M, Task Classification
Kinetics, Action Classification
HT100M, ASR Clustering
HT100M, Distant Supervision (Ours)

 Comparing different forms of supervision on COIN procedural activity classification task.

HT100M, Task Labels + Distant Superv.
HT100M, MIL-NCE with ASR
HT100M, Task Classification
Kinetics, Action Classification
HT100M, ASR Clustering
HT100M, Distant Supervision (Ours)

 Comparing different forms of supervision on COIN procedural activity classification task.

HT100M, Task Labels + Distant Superv.
HT100M, MIL-NCE with ASR
HT100M, Task Classification
Kinetics, Action Classification
HT100M, ASR Clustering
HT100M, Distant Supervision (Ours)

Comparison to the state-of-the-art on 4 downstream recognition tasks.

Segment Model	Pretraining Supervision	Pretraining Dataset	Linear Acc (%)
TSN (RGB+Flow) [57]	Supervised: action labels	Kinetics	36.5*
S3D [39]	Unsupervised: MIL-NCE on ASR	HT100M	37.5*
ClipBERT [34]	Supervised: captions	COCO + Visual Genome	30.8
VideoCLIP [65]	Unsupervised: NCE on ASR	HT100M	39.4
SlowFast [17]	Supervised: action labels	Kinetics	32.9
TimeSformer [8]	Supervised: action labels	Kinetics	48.3
TimeSformer [8]	Unsupervised: k-means on ASR	HT100M	46.5
TimeSformer	Unsupervised: distant supervision (ours)	HT100M	54.1

a) Step classification on COIN

_	Long-term Model	Segment Model	Pretraining Supervision	Pretraining Dataset
	Basic Transformer	S3D [39]	Unsupervised: MIL-NCE on ASR	HT100M
	Basic Transformer	SlowFast [17]	Supervised: action labels	Kinetics
	Basic Transformer	TimeSformer [8]	Supervised: action labels	Kinetics
	Basic Transformer	TimeSformer [8]	Unsupervised: k-means on ASR	HT100M
(Basic Transformer	TimeSformer	Unsupervised: distant supervision (ours)	HT100M
l	Transformer w/ KB Transfer	TimeSformer	Unsupervised: distant supervision (ours)	HT100M

c) Step forecasting on COIN

Transformer w/ KB Transfer	TimeSformer	Unsupervised: distant supervision (ours)	HT100M	89
Basic Transformer	TimeSformer	Unsupervised: distant supervision (ours)	HT100M	88
Basic Transformer	TimeSformer [8]	Unsupervised: k-means on ASR	HT100M	81
Basic Transformer	TimeSformer [8]	Supervised: action labels	Kinetics	81
Basic Transformer	SlowFast [17]	Supervised: action labels	Kinetics	76
Basic Transformer	S3D [39]	Unsupervised: MIL-NCE on ASR	HT100M	74
GHRM [69]	I3D [11]	Supervised: action labels	Kinetics	75
VideoGraph [26]	I3D [11]	Supervised: action labels	Kinetics	69
Timeception [25]	3D-ResNet [62]	Supervised: action labels	Kinetics	71
Long-term Model	Segment Model	Pretraining Supervision	Pretraining Dataset	A

b) Task classification on Breakfast

	Segment Model	Pretraining Supervision	Pretraining Dataset	Action (%)	Verb (%)	Noun
$\Lambda_{CC}(0/2)$	TSN [61]	-	-	33.2	60.2	46.0
Acc (%)	TRN [68]	-	-	35.3	65.9	45.4
28.1	TBN [29]	-	-	36.7	66.0	47.2
25.6	MoViNet [30]	-	-	47.7	72.2	57.3
34.7	TSM [36]	Supervised: action labels	Kinetics	38.3	67.9	49.0
34.0	SlowFast [17]	Supervised: action labels	Kinetics	38.5	65.6	50.0
38.2	ViViT-L [6]	Supervised: action labels	Kinetics	44.0	66.4	56.8
39.4	TimeSformer [8]	Supervised: action labels	Kinetics	42.3	66.6	54.4
	TimeSformer	Unsupervised: distant supervision (ours)	HT100M	44.4	67.1	58.1

d) Egocentric video classification on EPIC-Kitchens

Take-Home Message

Distant supervision from an external textual knowledge base enables

learning a strong visual representation for procedural activity recognition.

Image: Constant of the second scienceConstant of the second scienceImage: Constant of the second scienceConstant of the second scienceImage: Constant of the second scienceConstant of the second science

ECLIPSE: Efficient Long-range Video Retrieval using Sight and Sound

Yan-Bo Lin

Jie Lei

Mohit Bansal

Gedas Bertasius

Problem Overview

the correct video.

"A person takes out a bowl, breaks an egg into it, and starts preparing a mixture for a French toast. Afterward, he heats up the frying a pan, melts the butter in it, and puts a French toast in the frying pan."

• Given a textual query describing a several minute-long video, we aim to retrieve

Prior Work

Most prior text-to-video retrieval approaches focus on short-range videos (~5-15s in length).

Zellers, Rowan, et al. "MERLOT: Multimodal Neural Script Knowledge Models." NeurIPS'21.

Bain, Max, et al. "Frozen in time: A joint video and image encoder for end-to-end retrieval." ICCV'21.

Fu et al. "VIOLET : End-to-End Video-Language Transformers with Masked Visual-token Modeling" arXiv'21

Luo et al. "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval" arXiv'21.

Prior Work

CLIP is one of the most widely adopted vision-and-language models.

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision," ICML 2021

Long videos are costly to process and they also have high informational redundancy.

Long videos are costly to process and they also have high informational redundancy.

and redundant

Audio is **compact** and **cheap to process**.

Audio effectively captures temporal dynamics in videos.

Our Approach

CLIP to audiovisual retrieval of long videos.

Our proposed ECLIPSE model (Efficient CLIP with Sound Encoding) adapts

Results on ActivityNet

Our method outperforms CLIP4Clip while using 3x fewer frames.

Method	Num.	Inference	GPU Mem.	Samples	T2V
	Frames	GFLOPs↓	(in MB)↓	per Sec. ↑	R@1↑
CLIP4Clip	96	1251	24,802	17.39	41.7
EclipSE	32	827	10,637	50.93	42.3

Results on Other Datasets

Our method outperforms other methods while also being more efficient.

Method	Frames	QVH [25]	DiDeMo [26]	YC2 [27]	Charades [28]	GFLO
Frozen-in-Time [3]	32	55.0	34.6	32.2	11.9	1426
CLIP4Clip [16]	96	70.2	42.5	37.6	13.9	1251
ECLIPSE	32	70.8	44.2	38.5	15.7	827

Results on Other Datasets

Our method outperforms other methods while also being more efficient.

Method	Frames	QVH [25]	DiDeMo [26]	YC2 [27]	Charades [28]	GFLO
Frozen-in-Time [3]	32	55.0	34.6	32.2	11.9	1426
CLIP4Clip [16]	96	70.2	42.5	37.6	13.9	1251
ECLIPSE	32	70.8	44.2	38.5	15.7	827

Sound Localization

Our method learns to localize sounds even though it was not explicitly trained to do so.

Take-Home Message

for efficient long-range video retrieval.

Audio can be used to replace redundant and costly to process video parts

DINC COLLEGE OF ARTS AND SCIENCES **Computer Science**

Long Movie Clip Classification with State-Space Video Models

Md Mohaiminul Islam

Gedas Bertasius

• Applying Transformers to long video sequences is costly.

14*14 patches

Frame 1

Frame 2

14*14*60 = 11760 tokens

Motivation

Frame 3

Frame 60

Applying Transformers to long video sequences is costly.

14*14 patches

Frame 1

Frame 2

14*14*60 = 11760 tokens

1.38 Million pair-wise comparison for self-attention operation

Motivation

Frame 3

Frame 60

Efficient Attention for Video

Efficient attention schemes typically lead to a substantial drop in accuracy.

Patrick et al. "Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers," NeurIPS 2021

Structured State-Space Model

Structured state-space models can model long-range dependences.

Recurrent Computation

$$\begin{aligned} x_k &= Ax_{k-1} + Bx_k \\ y_k &= Cx_k + Dx_k \end{aligned}$$

No need to compute similarities between all pairs of tokens.

Gu et al. "Efficiently Modeling Long Sequences with Structured State Spaces," ICLR 2022

Long Range Arena

 Structured State-space (S4) model outperforms all prior methods on every task from the Long Range Arena benchmark.

Model	LISTOPS	Text	Retrieval	IMAGE	Pathfinder	Path-X	AVG
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
BigBird	36.05	64.02	59.29	40.83	74.87	X	54.17
Linear Trans.	16.13	<u>65.90</u>	53.09	42.34	75.30	X	50.46
Performer	18.01	65.40	53.82	42.77	77.05	×	51.18
FNet	35.33	65.11	59.61	38.67	77.80	X	54.42
Nyströmformer	37.15	65.52	<u>79.56</u>	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	<u>47.38</u>	77.72	X	<u>59.37</u>
S4	58.35	76.02	87.09	87.26	86.05	88.10	80.48

Theoretical Runtime

 Compared to self-attention, structured state-space operation is much more efficient.

> Attention $B(L^2 + HL)$ Memory

- State-Space BLH
- L: Sequence length, B: Batch size, H: Hidden dimension

The ViS4mer Model

The ViS4mer Model

Computational Efficiency

based models.

ViS4mer requires significantly less GPU memory than the Transformer-

GPU Memory Usage (GB)

41.38 5.15

Results on COIN and Breakfast

classification datasets.

Model	Pretraning Dataset	Pretraining Samples	Accuracy([†])	
VideoGraph [24]	Kinetics	306K	69.50	
Timeception [23]	Kinetics	306K	71.30	
GHRM [57]	Kinetics	306K	75.50	
Distant Supervision [32]	HowTo100M	136M	89.90	
ViS4mer	Kinetics	495K	88.17	

Model	Pretraning Dataset	Pretraining Samples	Accuracy([†])		
TSN [44]	Kinetics	306K	73.40		
Distant Supervision [32]	HowTo100M	136M	90.00		
ViS4mer	Kinetics	495K	88.41		

ViS4mer achieves competitive results on long-range procedural activity

a) Breakfast

b) COIN

Comparison with Efficient Attention Schemes

	Content (†)		Metadata (†)			User (↓)					
	Relation	Speak	Scene	Director	Genre	Writer	Year	Like	Views	Sam./s (†)	Mem (
Self-attention	52.38	37.31	62.79	56.07	52.70	42.26	39.16	0.31	3.83	1.88	41.38
Performer	50.00	38.80	60.46	58.87	49.45	48.21	41.25	0.31	3.93	4.67	5.93
Orthoformer	50.00	39.30	66.27	55.14	55.79	47.02	43.35	0.29	3.86	4.85	5.56
State-space	57.14	40.79	67.44	62.61	54.71	48.8	44.75	0.26	3.63	4.95	5.15

 ViS4mer outperforms other efficient attention schemes on 8 out of 9 movie understanding tasks from the Long Video Understanding (LVU) benchmark.

Take-Home Message

us to build a memory-efficient long-range video classification model.

Combining the strengths of self-attention and structured state-space allows

Questions?