An End-to-End Transformer Model for 3D Object Detection

Ananya, Andrew, Kaan, Sizhe

Motivation

3D Object Detection

- 3D object detection can produce 3D bounding boxes
- Important for medical imaging, autonomous vehicles, augmented reality

• Existing 3D detection models are carefully tuned and include inductive biases

• 3DETR presents a simple and accurate model for 3D object detection

3DETR Architecture

- Input: 3D point cloud
- Output: 3D bounding boxes with labels
- Out-of-the-box Transformer design

One Layer of Transformer Decoder

Implementation and Training

Framework	PyTorch
Optimizer	AdamW
Augmentation	RandomCuboid
Training GPU	8*V100
Epochs	1080

Empirical Results

Experimental Setup

- ScanNetV2
 - 1.2K point cloud samples, 18 object categories
- SUN RGB-D-v1
 - 5K point cloud samples, 37 object categories

- Test compared to BoxNet and VoteNet
 - Foundational for recent detection models
- Authors re-implemented these models for fair comparison
 - \circ ~ Led to 2 to 4% increase over original paper

Results - SOTA Comparison

- 3DETR-m (3DETR with **masked** self-attn.) outperforms both BoxNet and VoteNet.
- Achieve competitive results comparing to H3DNet.

* H3DNet: A 3D-specific architecture based on VoteNet

Method	ScanNetV2		SUN R	GB-D
	AP_{25}	AP_{50}	AP_{25}	AP_{50}
BoxNet [†] [42]	49.0	21.1	52.4	25.1
3DETR	62.7	37.5	58.0	30.3
VoteNet [†] [42]	60.4	37.5	58.3	33.4
3DETR-m	65.0	47.0	59.1	32.7
H3DNet [89]	67.2	48.1	60.1	39.0

Results - Encoder Comparison

• 3DETR's encoder is more effective than PointNet++

Method	Encoder	Decoder	Loss	ScanNetV2		2 SUN RGB-	
				AP_{25}	AP_{50}	AP_{25}	AP_{50}
3DETR	Tx.	Tx.	Set	62.7	37.5	58.0	30.3
	PN++	Tx.	Set	61.4	34.7	56.8	26.9

PN++: PointNet++ [45], Tx.: Transformer, Set loss § 3.4

Results - Decoder & Loss Comparison

- 3DETR's Decoder is more effective than that used by VoteNet and BoxNet
- 3DETR's set loss also made a significant difference.

# Method	Encoder	Decoder	Loss	ScanNetV2		SUN RGB-D			
				AP_{25}	AP_{50}	AP_{25}	AP_{50}		
Comparing	Comparing different decoders								
1 3DETR	Tx.	Tx.	Set	62.7	37.5	58.0	30.3		
2	Tx.	Box	Box	31.0	10.2	36.4	14.4		
3	Tx.	Vote	Vote	46.1	23.4	47.5	24.9		
Comparing different losses									
4	Tx.	Tx.	Box	49.6	20.5	49.5	21.1		
5	Tx.	Tx.	Vote	54.0	31.9	53.4	28.3		

Tx.: Transformer, Vote/Box loss [42], Set loss § 3.4

Results - Shape Classification

• Shows that 3DETR can be flexibly adapted to various tasks and achieve competitive results.

Method	input	mAcc	OA
PointNet++ [45]	point	_	91.9
SpecGCN [71]	point	_	92.1
DGCNN [77]	point	90.2	92.2
PointWeb [90]	point	89.4	92.3
SpiderCNN [80]	point	_	92.4
PointConv [78]	point	_	92.5
KPConv [67]	point	_	92.9
InterpCNN [34]	point	_	93.0
3DETR encoder (Ours)	point	89.1	92.1
3DETR-m encoder (Ours)	point	89.9	91.9

Results - Positional Embedding & Query

• Clear benefit for non-parametric query embedding and Fourier positional encoding

	Set of Points Query points			(Query				
and the second second				as the second	em	beddings			
23		Bando	_ (Š		\square				
	Sed 1			→~F)-	→A				
	A second	Sampl	le	Positiona	, P				
		PER 2	•	Encoding					
	Common State		and the second second						
				~ –					
#	Method	Positiona	al Embedding	Query Type	ScanN	NetV2			
#	Method	Positiona Encoder	al Embedding Decoder	Query Type	ScanN AP ₂₅	NetV2 AP ₅₀			
#	Method 3DETR	Positiona Encoder	al Embedding Decoder Fourier	Query Type np + Fourier	Scan AP ₂₅ 62.7	NetV2 AP ₅₀ 37.5			
# 1 2	Method 3DETR	Positiona Encoder - Fourier	al Embedding Decoder Fourier Fourier	Query Type np + Fourier np + Fourier	Scan AP ₂₅ 62.7 61.8	NetV2 AP ₅₀ 37.5 37.0			
# 1 2 3	Method 3DETR	Positiona Encoder - Fourier Sine	al Embedding Decoder Fourier Fourier Sine	Query Type np + Fourier np + Fourier np + Sine	ScanN AP ₂₅ 62.7 61.8 55.8	NetV2 AP ₅₀ 37.5 37.0 30.9			
# 1 2 3 4	Method 3DETR	Positiona Encoder - Fourier Sine -	al Embedding Decoder Fourier Fourier Sine	Query Type np + Fourier np + Fourier np + Sine np + Sine	ScanN AP ₂₅ 62.7 61.8 55.8 31.3	NetV2 AP ₅₀ 37.5 37.0 30.9 10.8			

np: non-parametric query (§ 3.2)

Handpicked Examples

Key Examples: Occluded Objects

- Corner of bed not visible in scan
- Important for single-view applications

Ground Truth

Prediction

Visualizing Attention

- Reference point in blue
- Points with highest attention in red
- Each head focuses on different geometric parts

Detailed Comparison to State-of-the-Art

Method	od Arch.		NetV2	SUN RGB-D	
		AP_{25}	AP_{50}	AP_{25}	AP_{50}
BoxNet [†] [42]	BoxNet	49.0	21.1	52.4	25.1
3DETR	Tx.	62.7	37.5	56.8	30.1
VoteNet [†] [42]	VoteNet	60.4	37.5	58.3	33.4
3DETR-m	Tx.	65.0	47.0	59.0	32.7
H3DNet [89]	VoteNet + 3D primitives	67.2	48.1	60.1	39.0
HGNet [5]	VoteNet + GraphConv	61.3	34.4	61.6	34.4
3D-MPA [11]	VoteNet + GraphConv	64.2	49.2	-	-

Table 11: Detailed state-of-the-art comparison on 3D detec-tion.