VATT : Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text

Authors : Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, Boqing Gong

Submitted Apr 22, 2021; Last Revised Dec 7, 2021 (NeurIPS 2021)

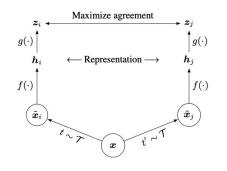
Presented by : David K., Li Hui, Junjie

Research Questions & Motivation

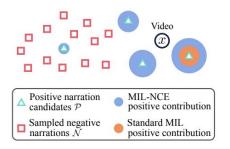
- Can we use **ONE architecture** to learn vision, audio and language representations ?
- Can we share **ONE backbone** across all modalities ?
- How could we use **RAW inputs** with this model ?
- How could we **drop redundancy** in raw inputs ?
- Can we train this pipeline without supervision ?

Related Work - Self-Supervised Learning

SimCLR : Chen et al, 2020 (Vision)

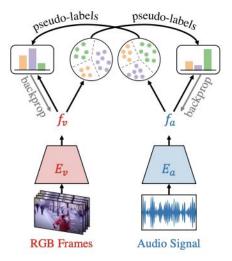


MIL-NCE : Miech et al, 2020 (Vision + Text)

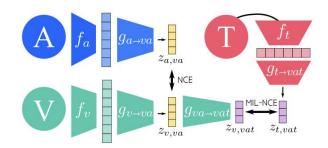


XDC : Alwassel et al, 2020 (Vision + Audio)

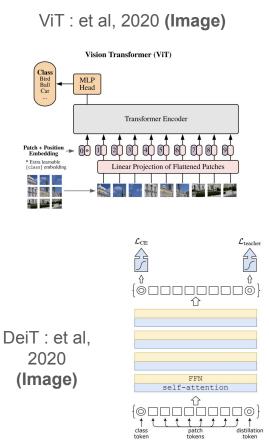
Cross-Modal Deep Clustering (XDC)



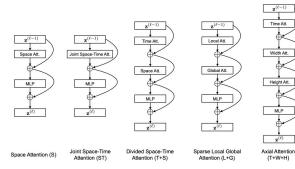
MMV : Alayrac, 2020 (Vision + Audio + Text)



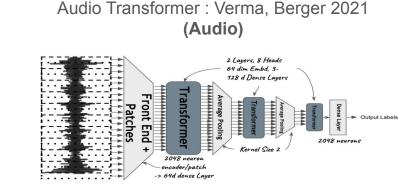
Related Work - Transformers



TimeSformer : Bertasius et al, 2021 (Video)



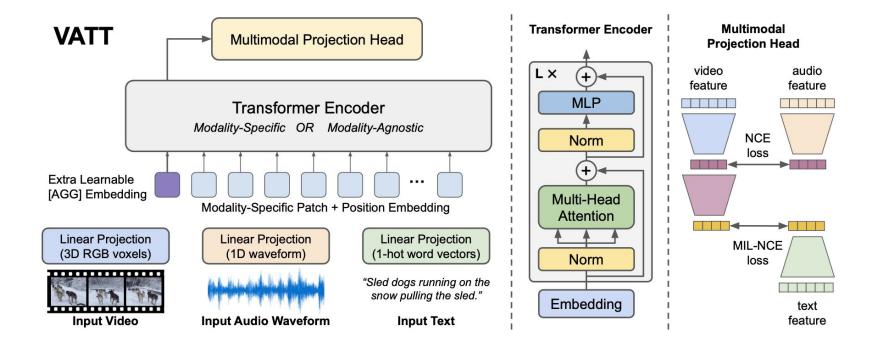
Multimodal?



Critiques on Prior Methods

- Large-scale supervised training of Transformers :
 - Extremely costly and time-consuming for manual labelling of data
 - In reality, many visual data are unlabelled and unstructured
- Ad-hoc network design on previous works
 - Separate weights on different modalities (no weight sharing)
 - Computationally intensive architecture
- Low resolution input
 - Limited performance

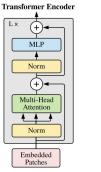
Introducing VATT

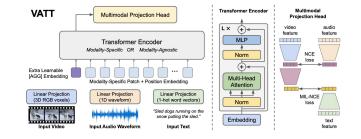


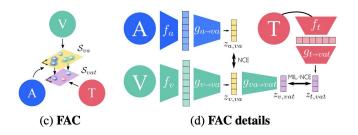
Architecture

Overview of the VATT Architecture







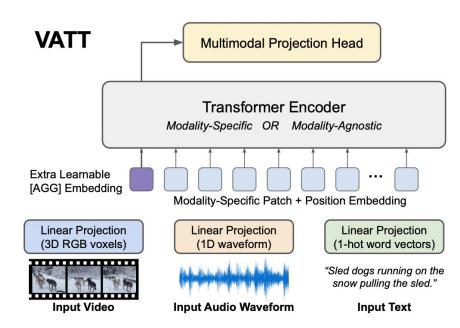


MMV

ViT

VATT

Overview of the VATT Architecture



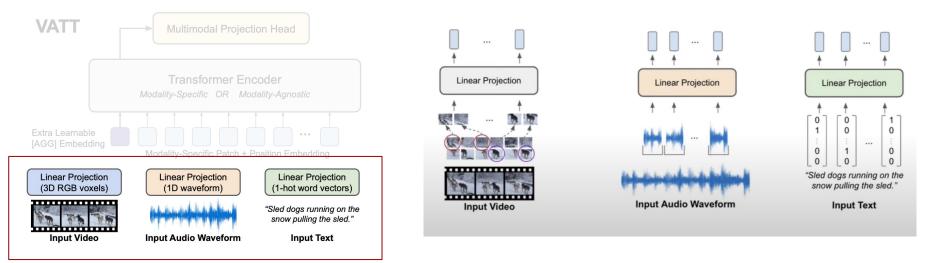
- Tokenization
- Positional Encoding
- DropToken
- Common Space Projection (MMV)
 - Self-Supervised Multimodal

Versatile Network (NeurIPS'20)

- Multimodal Contrastive Learning
 - End-to-End Learning of Visual
 Representation from Uncurated
 Instructional Videos (CVPR'20)

Tokenization Layer

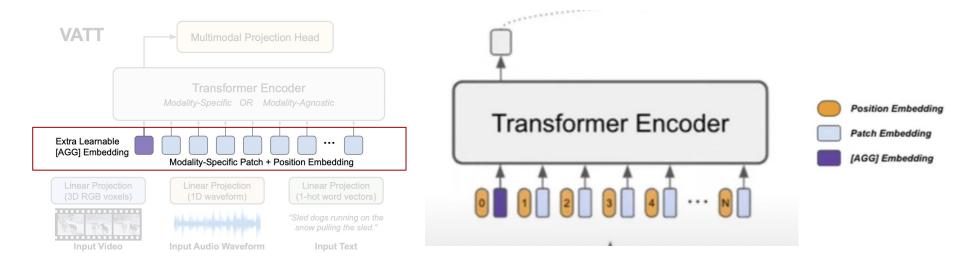
• A modality-specific tokenization layer that takes raw signal as inputs and returns a sequence of vectors to be fed to the Transformers



Patching (similar to ViT)

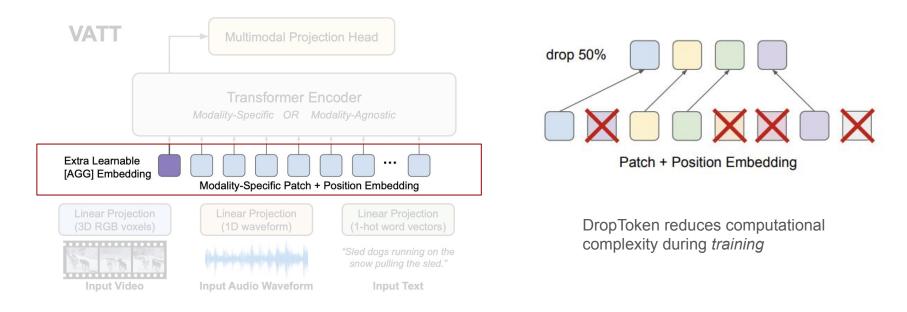
Positional Encoding

• Similar to standard ViT, each modality has its own positional encoding, which injects the order of tokens into the Transformer



DropToken (video & audio inputs)

- Randomly sampled 50%* of the tokens and feed the sampled sequence to the Transformer
- Raw inputs : Low-resolution vs High-fidelity + DropToken



*Good trade-off between accuracy and computational costs

Transformer Encoder

• Standard ViT architecture is used

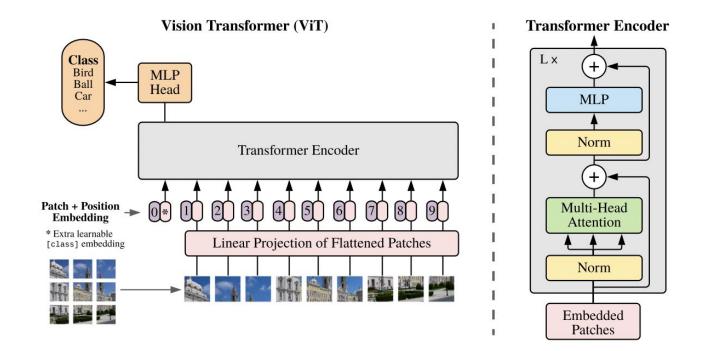
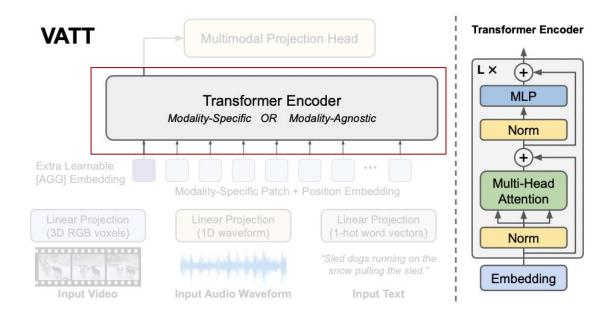


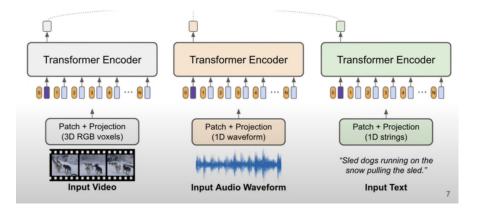
Figure from <u>An Image Is Worth 16X16 Words : Transformers for Image Recognition</u> (ICLR'21)

Transformer Encoder

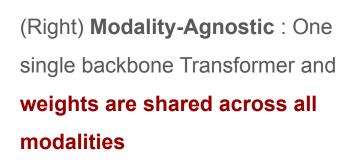
Two Settings of Transformer Encoder : Modality-Specific or Modality-Agnostic



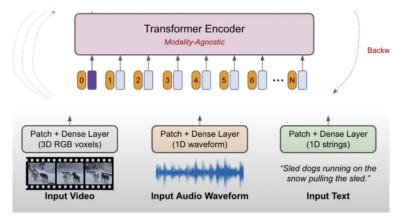
Modality-Specific vs Modality-Agnostic



(Left) Modality-Specific : the
backbone Transformers are
separate and have specific
weights for each modality

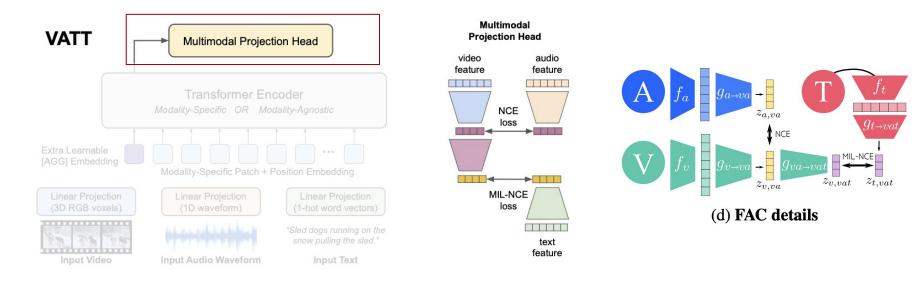


Adapted from : Google Research Presentation



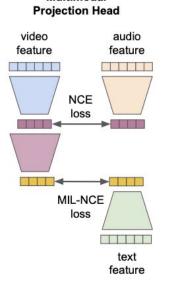
Architecture : Common Space Projection

- Intuition : Different modalities have different levels of semantic granularity
- We need a common space that is semantically hierarchical to "fuse" the multi-modality features

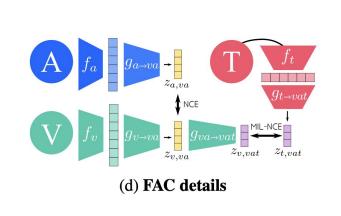


Rightmost figure from Self-Supervised Multimodal Versatile Network (NeurIPS'20)

Architecture : Multimodal Contrastive Learning



Multimodal



- Contrastive representation in self-supervised learning
- To align the pairs :
 - Vision & Audio Pair : Noise

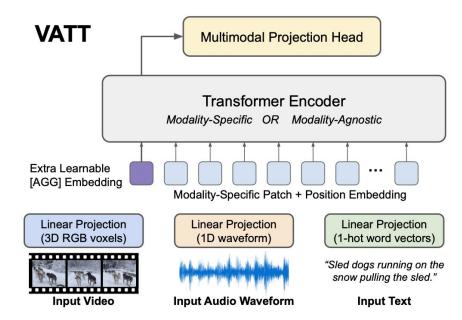
Contrastive Estimation (NCE) loss

• Vision & Text Pair :

Multiple-Instance-Learning-NC

E (MIL-NCE) loss

VATT Architecture Recap



- Tokenization
- Positional Encoding
- DropToken
- Common Space Project
- Multimodal Contrastive Learning

Experiments

Experimental Setup

Pre-trained on HowTo100M and AudioSet and evaluated on:

- 1. Video Action Recognition on UCF101, Kinetics-400/600, and Moments in Time
- 2. Audio Event Classification on ESC50 and AudioSet
- 3. Zero-shot Video Retrieval on YouCook2 and MSR-VTT
- 4. Image Classification on ImageNet

VATT-MA-Medium \rightarrow Modality-agnostic

Video Action Recognition

	Kineti	Kinetics-400 Kinetics-600		cs-600	Moment		
Method	TOP-1	TOP-5	TOP-1	TOP-5	TOP-1	TOP-5	TFLOPs
I3D [13]	71.1	89.3	71.9	90.1	29.5	56.1	-
R(2+1)D [26]	72.0	90.0	-	-	-	-	17.5
bLVNet [27]	73.5	91.2	-	-	31.4	59.3	0.84
S3D-G [96]	74.7	93.4	-	-	-	-	-
Oct-I3D+NL [20]	75.7	-	76.0	-	-	-	0.84
D3D [83]	75.9	-	77.9	-	-	-	-
I3D+NL [93]	77.7	93.3	-	-	-	-	10.8
ip-CSN-152 [87]	77.8	92.8	-	-		-	3.3
AttentionNAS [92]	-	-	79.8	94.4	32.5	60.3	1.0
AssembleNet-101 [77]	-	-	-	-	34.3	62.7	-
MoViNet-A5 [47]	78.2	-	82.7	-	39.1	-	0.29
LGD-3D-101 [69]	79.4	94.4	81.5	95.6	- 1	-	-
SlowFast-R101-NL [30]	79.8	93.9	81.8	95.1	-	-	7.0
X3D-XL [29]	79.1	93.9	81.9	95.5	-	-	1.5
X3D-XXL [29]	80.4	94.6	-	-	-	-	5.8
TimeSFormer-L [9]	80.7	94.7	82.2	95.6	-	-	7.14
VATT-Base	79.6	94.9	80.5	95.5	38.7	67.5	9.09
VATT-Medium	81.1	95.6	82.4	96.1	39.5	68.2	15.02
VATT-Large	82.1	95.5	83.6	96.6	41.1	67.7	29.80
VATT-MA-Medium	79.9	94.9	80.8	95.5	37.8	65.9	15.02

Achieves SOTA and set a new record at the time on the biggest benchmarks.

Outperforms TimeSFormer, a ViT-inspired fully-supervised approach.

Modality-agnostic VATT is competitive with:

- Base model
- fully-supervised

Table 1: Video action recognition accuracy on Kinetics-400, Kinetics-600, and Moments in Time.

Audio Event Classification

Метнор	mAP	AUC	d-prime
DaiNet [21]	29.5	95.8	2.437
LeeNet11 [55]	26.6	95.3	2.371
LeeNet24 [55]	33.6	96.3	2.525
Res1dNet31 [49]	36.5	95.8	2.444
Res1dNet51 [49]	35.5	94.8	2.295
Wavegram-CNN [49]	38.9	96.8	2.612
VATT-Base	39.4	97.1	2.895
VATT-MA-Medium	39.3	97.0	2.884

Table 2: Finetuning results for AudioSet event classification.

Outperforms CNN-based approaches to audio event classification

Modality-agnostic model is competitive with modality-specific model.

Image Classification

Метнор	PRE-TRAINING DATA	Top-1	Top-5
iGPT-L [16]	ImageNet	72.6	-
ViT-Base [25]	JFT	79.9	
VATT-Base	-	64.7	83.9
VATT-Base	HowTo100M	78.7	93.9

Pre-trained on video data but achieves competitive results vs. fully-supervised training on an immense image dataset.

Table 3: Finetuning results for ImageNet classification.

Zero-Shot Video Retrieval

			YouC	ook2	MSR-	-VTT
Method	BATCH	EPOCH	R@10	MedR	R@10	MedR
MIL-NCE [59] MMV [1]	8192 4096	27 8	51.2 45.4	10 13	32.4 31.1	30 38
VATT-MBS	2048	4	45.5	13	29.7	49
VATT-MA-Medium	2048	4	40.6	17	23.6	67

Table 4: Zero-shot text-to-video retrieval.

Does not set any records but is competitive with other self-supervised models. Thank You