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Recap of Self-Attention

« Self-attention enables capturing long-range dependencies
among words.
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Transformers for Visual Data

 How do we apply transformers on visual data (e.g., images
or videos)?
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Why Transformers in CV?

1. In the recent years, transformers have revolutionized
the field of natural language processing (NLP).

2. Convolutional networks are designed to capture short-
range local connections in visual data while transformers
can capture long-range dependencies.

3. Convolutional networks can be difficult to scale to larger
model sizes, which are needed for modern big data
regimes.

4. Transformers are much better suited for multimodal
learning.



Challenges

 How do we apply transformers on visual data (e.g., images
or videos)?
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Challenges

 How do we apply transformers on visual data (e.g., images
or videos)?
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We can then feed the resulting 22422 = 50,176 image
tokens into a standard transformer model.
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Challenges

 How do we apply transformers on visual data (e.g., images
or videos)?
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The self-attention cost scales quadratically with the
number of tokens (e.g., 50,176*2 = 2.5B).




Challenges

 How do we apply transformers on visual data (e.g., images
or videos)?
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Divide an image into a set of non-overlapping 16x16 patches



Challenges

 How do we apply transformers on visual data (e.g., images
or videos)?
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This results in 196 patches for a 224x224 image, which
enables the application of standard global self-attention.



Image Classification

« The goal is to identify the category of a given image.
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Vision Transformer (ViT)
* The authors split an image into fixed-size patches, linearly
embed each of them, and add position embeddings.

* The resulting sequence of vectors is then fed into a
standard Transformer encoder.
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Vision Transformer (ViT)
* The authors split an image into fixed-size patches, linearly
embed each of them, and add position embeddings.

« The resulting sequence of vectors is then fed into a
standard Transformer encoder.
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Linear Projection of Flattened Patches

- The authors reshape the image © € R *W*¢ 2|nto a
sequence of flattened 2D patches x, € RY*(F-C).

* The patches are then linearly projected using a trainable
projection layer E.
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Linear Projection of Flattened Patches

RHAEXWXC int0 3

* The authors reshape the image - <
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sequence of flattened 2D patches

* The patches are then linearly projected using a trainable
projection layer E.
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Linear Projection of Flattened Patches

RHAEXWXC int0 3

* The authors reshape the image - <
c RNX (P2-C)

sequence of flattened 2D patches

* The patches are then linearly projected using a trainable
projection layer E.
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A trainable linear projection
(i.e., a fully connected layer).
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Linear Projection of Flattened Patches

RHAEXWXC int0 3

* The authors reshape the image - <
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sequence of flattened 2D patches

* The patches are then linearly projected using a trainable
projection layer E.
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D dimensional linear
embeddings of the
patches.




Linear Projection of Flattened Patches
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* The authors reshape the image - <
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* The patches are then linearly projected using a trainable
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A special learnable embedding, which will serve as
the image representation used for classification.



Linear Projection of Flattened Patches

RHAEXWXC int0 3

* The authors reshape the image - <
c RNX (P2-C)

sequence of flattened 2D patches

* The patches are then linearly projected using a trainable
projection layer E.
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Linear Projection of Flattened Patches

RHAEXWXC int0 3

* The authors reshape the image - <
c RNX (P2-C)

sequence of flattened 2D patches

* The patches are then linearly projected using a trainable
projection layer E.

. w1l R. v2R. Y
Z) — [xclassa xpE: XpE, "ty xp E] =+ E])OS:

AN

A sequence of vectors used as
input to the Transformer at layer 0.



Vision Transformer (ViT)
* The authors split an image into fixed-size patches, linearly
embed each of them, and add position embeddings.

« The resulting sequence of vectors is then fed into a
standard Transformer encoder.
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Transformer Encoder

Transformer Encoder

A
 The Transformer encoder consists of Lx @4_
alternating layers of self-attention v
(MSA) and MLP blocks. ]
Norm
« Layernorm (LN) is applied before (:)<—
every block, and residual connections Multi-Head
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A_4 A
Norm

 The MLP contains two layers with a

GELU non-linearity. Embedded ]




Vision Transformer (ViT)
* The authors split an image into fixed-size patches, linearly
embed each of them, and add position embeddings.

« The resulting sequence of vectors is then fed into a
standard Transformer encoder.

Transformer Encoder

—

YVision Transformer (ViT)

MLP
Hecad L
> i
Transformer Encoder Norm

v g BEE] o
:

l:‘ 1' :ntw\iu 18 Linear Projection al Blattened Patc h: 4 # [)
TR [
pEE -SERENENEE

e =y




Image Classification

* The final image embedding is obtained from the final
block for the classification token.

* On top of this representation, the authors append a 1-
hidden-layer MLP, which is used to predict the final
Image categories.

TN

(Class
Bird MLP
mall \
Car lL .ul

~

. . 1, 2. . N
7’” - xC‘.a‘i‘;) xPE: xpE) T xp EI { Ej"’-’).‘i}

A special leamable embedding, which will serve as Transformer Encoder

the image representation used for classification.

a) a special CLS token

appended to the input sequence b) final classification stage



Vision Transformer (ViT)
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VIT Architectures

 The VIT architecture variants are based on those used
by BERT for language modeling.

* Notation: ViT-L/16 means the “Large” variant with
16x%16 input patch size.

Model [Layers Hidden size 2 MILPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M

ViT-Huge 32 1280 5120 16 632M




VIT Architectures

 The VIT architecture variants are based on those used
by BERT for language modeling.

* Notation: ViT-L/16 means the “Large” variant with
16x%16 input patch size.

Model Layers Hidden size ) MILPsize Heads (Params)
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 &321\}4

Network #param.

ResNet-18 [21] 12M

ResNel-50 [21] 25M

ResNet-101 [21] 45M

ResNet-152 [21] . 60M




Hybrid CNN-VIT Architectures

* As an alternative to raw image patches, the input
sequence can be formed from feature maps of a CNN.

* The patch embedding projection E is applied to patches
extracted from a CNN feature map.
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Experiments

« The authors evaluate the representation learned by
(1) ResNet, (2) ViT, and (3) hybrid architectures.
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Experiments

« The authors evaluate the representation learned by
(1) ResNet, (2) ViT, and (3) hybrid architectures.

» Datasets used for pre-training:
1. ImageNet: 1K classes and 1.3M images.
2. ImageNet-21k: 21K classes and 14M images.
3. JFT:. 18K classes and 303M images.

* The performance is evaluated using a standard
accuracy metric.



Transfer Learning Results

 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification
dataset.

* The authors report mean and standard deviation of the
accuracies, averaged over three fine-tuning runs.

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)

ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 £ 0.02 88.4/88.5"
ImageNet Real 90.72+005 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.42+003 99.15+0.03 99.37 + 0.06 —
CIFAR-100 94.55+0.04 93901005 93.25+0.05 93.51 +0.08 -
Oxford-1IIT Pets 97.56 +003 97.32+011 94.67+0.a5 96.62 +0.23 -

Oxford Flowers-102 99.68 +0.02  99.74 +0.00 99.61 +0.02 99.63 + 0.03 -

VTAB (19 tasks) 77.63+023 76.28+046 72.72+0.21 76.29+1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
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 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification
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* The authors report mean and standard deviation of the
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Transfer Learning Results

 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification
dataset.

* The authors report mean and standard deviation of the
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ViT pre-trained on Imagenet-21K.
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ResNet-based state-of-the-art approach pretrained on JFT.



Transfer Learning Results

 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification

dataset.

* The authors report mean and standard deviation of the
accuracies, averaged over three fine-tuning runs.
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EfficientNet-based state-of-the-art semi-supervised approach
pretrained on JFT (without using JFT labels).



Transfer Learning Results

 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification
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* The authors report mean and standard deviation of the
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Transfer Learning Results

 Amodel is (1) pre-trained on a large-scale dataset, and
then (2) fine-tuned on a smaller image classification

dataset.

* The authors report mean and standard deviation of the
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Pre-training Data Requirements

* The ViT models are pre-trained on datasets of increasing
size: ImageNet, ImageNet-21k, and JFT300M.

* ImageNet accuracy is reported after finetuning on
ImageNet.
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Scaling Study

« Performance versus pre-training compute for different
architectures: Vision Transformers, ResNets, and hybrids.

Avcrage-5 ImagcNc:
W)
e 93 m
o . 85 1 :
o R
o
2
~
—
,_!_J i
b 80 -
(i:-’ 90 Transformer (ViT) ® Transtorma- (VIiT)
' R2sNat (BiT) ResNet (BiT
Hybrid Hybird
c o : . S S N oo s : S O
|1 0- 10 10~ |10~

Total pre-training compuic [exaFLODs]



Scaling Study

* Performance versus pre-training compute for different
architectures: Vision Transformers, ResNets, and hybrids.

Avcrage-5 ImagcNc:
w)
I &
o T S @ By
& T
=
2 o
~
—
5= -
Z 80 1
EE 00 - ® Transtormer (ViT) ®  Transtormz- (ViT)
" R2sNat (RiT) ResNet (BiT
Hybrid Hybird
c o : . S N coedgs o : S O
|10+ 10¢ 10~ 10~

Total pre-training compuic [exaFLOIs]



Scaling Study

* Performance versus pre-training compute for different
architectures: Vision Transformers, ResNets, and hybrids.

Avcrage-5 ImagcNc:
w)
o &
: ‘)5 ] @
[
o 85
L\.}
=
> o
~
—
5= -
2 80 -
E ) ® Transtormer (ViT) ©  Transtormz- (ViT)
RasNat (BiT) ResNet (BiT)
Hybrid Hybrid
|10+ 10¢ R [0

Total pre-training compuic [exaFLOIs]



Scaling Study

* Performance versus pre-training compute for different
architectures: Vision Transformers, ResNets, and hybrids.
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Visualized Attention

* The authors visualize the attention from the output token
to the input space.

Input  Attention




Summary

* The availability of large-scale datasets makes ViTs
appealing for modern big-data regimes where *all* can be
learned from the data.

* In such cases, strong inductive biases of older models
(e.g., ResNets) become unnecessary and may be harmful
as they limit the model’s expressivity.

« Despite limited technical novelty, the proposed method’s
simplicity, effectiveness, and generality makes it a
valuable contribution to the research community.



Weaknesses to Address Next Week

 Data efficiency, i.e., training ViTs on ImageNet alone.
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Paper Selection Assignment

» The reading list is posted here.

» Select the following:

1. Seven 30min or 45min papers for standard paper presentations
(marked red and purple in the schedule). Any combo of the papers
suffice (e.g., five 30min & two 45min papers, all 30min papers, etc.)

2. Three 20min papers for paper battles (marked green in the schedule).
« Make sure that the papers that you selected will NOT be presented by me.

« Rank the papers in each of these lists in descending order of preference
(from highest to lowest) and upload them to Canvas by Wednesday, Jan
17th, 11:59 PM (please include paper IDs in your lists!!).

* | will then update the website with the paper assignments.


https://www.gedasbertasius.com/comp790-24s-schedule

