AIM: Adapting Image Models for Efficient Video Action Recognition

Taojiannan Yang¹, Yi Zhu², Yusheng Xie², Aston Zhang², Chen Chen¹, Mu Li² ¹University of Central Florida ²Amazon Web Services

Presented By:

Annie, Shoubin, Nick, Junjie

Finetuning Methods for Video Understanding

In recent years, Video Understanding has typically used two techniques:

- Image Model + Temporal Module: Adding a specialized network to specifically integrate temporal reasoning
 Think... TimeSFormer [10]
- Inflating an Existing Image Model: Stacking and connecting layers of existing image models for each frame of a given video
 - Think... Quo Vadis [3]

The Issue?

These traditional finetuning techniques often require either training from scratch or full finetuning of a pretrained network

- Both are costly...
 - Bertasius et Al. (2021) required tuning of 121M for Divided Space-Time TimeSFormer Model
 - Liu et Al. (2022) noted their inflation training technique required 1200 V100 GPU Hours for training VideoSwin
- Plus, poorly finetuning pretrained parameters might diminish or destroy generalized representations

The Vision Transformer (ViT)

- Vision Transformers (ViT) have become widely adopted for CV tasks, including but not limited to Video Action Recognition
- High level Idea: Tokenize and imbed image patches, then feed through Multi-Headed Self Attention and MLP Layers

The Vision Transformer (ViT) for Video

Baseline Space-Only Approach: Compute each frame and average the results Space-Time Approaches: Add new Temporal Modual to Image Model

The Vision Transformer (ViT) for Video

Baseline Space-Only Approach: While simple, being time-agnostic leaves much to be desired Space-Time Approaches: Approaches SOTA Results, but high training costs makes these models cost-probibitive

How can we *Efficiently*Tune a ViT based video model?

- Taking Inspiration from NLP... Is it possible to finetune a small batch of extra parameters (Adapters) while freezing pretrained layers?
- Advantages:
 - Training can be more efficient (tuning 38M vs 88M Parameters)
 - Can still leverage high performance of larger pretrained networks, without all of the computational overhead

Method

Add simple Adapter module:

Spatial adaption

- Freeze ViT weights
- Add adapter after

self-attention layer

• comparable performance

with full finetuned

space-only baseline

(b) ViT Block

(c) Spatial Adaptation

Temporal adaptation

- Spatial information not enough
- Adding temporal modules too expensive
- Solution: reuse the pre-trained self-attention layer in the image model
 - Reshape input to learn relationships across time

Final modified Transformer block

- Add final adapter to jointly tune the representations for spatiotemporal reasoning
- Final prediction: feed the average of the [class] tokens of each input frame to classification head

Experiments

Datasets:

- Kinetics-400
- Kinetics-700
- Something-Something V2
- Diving-48 (15.9k training videos. Designed to be unbiased towards static representations)

Effectiveness of proposed components

Compared the method to three baselines on Something-Something-V2

Methods	Pretrain	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
Frozen space-only	IN-21K	86	0.1	15.1	36.9	$8 \times 1 \times 3$
Finetuned space-only	IN-21K	86	86	36.2	68.1	$8 \times 1 \times 3$
Finetuned space-time (Bertasius et al., 2021)	IN-21K	121	121	59.5	85.6	$8 \times 1 \times 3$

Effectiveness of proposed components

Spatial adaptation, temporal adaptation and joint adaptation gradually add spatiotemporal reasoning to the frozen image model

Methods	Pretrain	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
Frozen space-only	IN-21K	86	0.1	15.1	36.9	$8 \times 1 \times 3$
Finetuned space-only	IN-21K	86	86	36.2	68.1	$8 \times 1 \times 3$
Finetuned space-time (Bertasius et al., 2021)	IN-21K	121	121	59.5	85.6	$8 \times 1 \times 3$
Frozen space-only + spatial adaptation	IN-21K	89	3.7	36.7	68.3	$8 \times 1 \times 3$
+ temporal adaptation	IN-21K	97	10.8	61.2	87.7	$8 \times 1 \times 3$
+ joint adaptation (AIM)	IN-21K	100	14.3	62.0	87.9	$8 \times 1 \times 3$

Effectiveness of proposed components

The approach could easily benefit from stronger image foundation models in the future

Methods	Pretrain	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
Frozen space-only	IN-21K	86	0.1	15.1	36.9	$8 \times 1 \times 3$
Finetuned space-only	IN-21K	86	86	36.2	68.1	$8 \times 1 \times 3$
Finetuned space-time (Bertasius et al., 2021)	IN-21K	121	121	59.5	85.6	$8 \times 1 \times 3$
Frozen space-only + spatial adaptation	IN-21K	89	3.7	36.7	68.3	$8 \times 1 \times 3$
+ temporal adaptation	IN-21K	97	10.8	61.2	87.7	$8 \times 1 \times 3$
+ joint adaptation (AIM)	IN-21K	100	14.3	62.0	87.9	$8 \times 1 \times 3$
AIM	CLIP	100	14.3	66.4	90.5	$8 \times 1 \times 3$

Comparison with SoTAs

Comparisons on Kinetics-400

Methods	Pretrain	GFLOPs	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
MViT-B (Fan et al., 2021)	-	4095	37	37	81.2	95.1	64×3×3
UniFormer-B (Li et al., 2021)	IN-1K	3108	50	50	83.0	95.4	$32 \times 4 \times 3$
TimeSformer-L (Bertasius et al., 2021)	IN-21K	7140	121	121	80.7	94.7	$64 \times 1 \times 3$
ViViT-L/16×2 FE (Arnab et al., 2021)	IN-21K	3980	311	311	80.6	92.7	$32 \times 1 \times 1$
VideoSwin-L (Liu et al., 2022)	IN-21K	7248	197	197	83.1	95.9	$32 \times 4 \times 3$
MViTv2-L (312 ↑) (Li et al., 2022)	IN-21K	42420	218	218	86.1	97.0	$32 \times 3 \times 5$
MTV-L (Yan et al., 2022)	JFT	18050	876	876	84.3	96.3	$32 \times 4 \times 3$
TokenLearner-L/10 (Ryoo et al., 2021)	JFT	48912	450	450	85.4	96.3	$64 \times 4 \times 3$
PromptCLIP A7 (Ju et al., 2021)	CLIP	-	-	-	76.8	93.5	$16 \times 5 \times 1$
ActionCLIP (Wang et al., 2021a)	CLIP	16890	142	142	83.8	97.1	$32 \times 10 \times 3$
X-CLIP-L/14 (Ni et al., 2022)	CLIP	7890	420	420	87.1	97.6	$8 \times 4 \times 3$
EVL ViT-L/14 (Lin et al., 2022)	CLIP	8088	368	59	87.3	-	$32 \times 3 \times 1$
AIM ViT-B/16	CLIP	606	97	11	83.9	96.3	8×3×1
AIM ViT-B/16	CLIP	1214	97	11	84.5	96.6	$16 \times 3 \times 1$
AIM ViT-B/16	CLIP	2428	97	11	84.7	96.7	$32 \times 3 \times 1$
AIM ViT-L/14	CLIP	2802	341	38	86.8	97.2	$8 \times 3 \times 1$
AIM ViT-L/14	CLIP	5604	341	38	87.3	97.6	$16 \times 3 \times 1$
AIM ViT-L/14	CLIP	11208	341	38	87.5	97.7	$32 \times 3 \times 1$

Comparison with SoTAs

Method	Pretrain	Tunable Param	Top-1
VidTR-L (Zhang et al., 2021b)	IN-21K	91	70.2
MTV-L (Yan et al., 2022)	IN-21K	876	75.2
MViTv2-B (Li et al., 2022)	-	51	76.6
MViTv2-L (40×312 \uparrow) (Li et al., 2022)	IN-21K	218	79.4
MaskFeat ($40 \times 312 \uparrow$) (Wei et al., 2022)	K700	218	80.4
AIM ViT-B/16	CLIP	11	76.9
AIM ViT-L/14	CLIP	38	80.4

Comparisons on Kinetics-700

Comparisons on Diving-48

Method	Pretrain	Tunable Param	Top-1
TimeSformer-L (Bertasius et al., 2021)	IN-21K	121	81.0
VideoSwin-B (Liu et al., 2022)	IN-21K	88	81.9
BEVT (Wang et al., 2022a)	$K400^{\dagger}$	88	86.7
SIFAR-B-14 (Fan et al., 2022)	IN-21K	87	87.3
ORViT (Herzig et al., 2022)	IN-21K	160	88.0
AIM ViT-B/16	CLIP	11	88.9
AIM ViT-L/14	CLIP	38	90.6

Different Pre-trained Models

Model	Backbone	Pretrain	Tunable Param (M)	Mem (G)	Time (H)	Top-1
TimeSformer	ViT-B	IN-21K	121	10	20	78.5
AIM	ViT-B	IN-21K	11	7	15	78.8
TimeSformer	ViT-B	CLIP	121	10	20	82.0
AIM	ViT-B	CLIP	11	7	15	83.9
VideoSwin-B	Swin-B	IN-21K	88	18	64	82.7
AIM	Swin-B	IN-21K	9.2	9	37	82.1

Different pre-trained models on Kinetics-400

Data Efficiency

- Keep the well pre-trained image representations intact
- Have an advantage when

downstream data is insufficient

Comparison: AIM v.s. PromptCLIP

• image model for visual tasks, flexiable to a large number of visual models

wow! reusing spatial layers as temporal layers can work?!

simple, efficient, and unified, more likelyto be a new foundation video modeling scheme

b Better result but less input view, less/similar parameter!

PromptCLIP 🤔

image-language model for visual tasks, need an extra text model

everything logical and make sense, but less excited

$\mathbf{R} \mathbf{A} + \mathbf{B} + \mathbf{C}$

e cool performance on a wide range tasks

ng <mark>Comparis</mark>on

Comparison: AIM v.s. PromptCLIP

Table 2: Comparison to state-of-the-art on Kinetics-400. Views = #frames $\times \#$ temporal $\times \#$ spatial.

Methods	Pretrain	GFLOPs	Param (M)	Tunable Param (M)	Top-1	Top-5	Views
MViT-B (Fan et al., 2021)		4095	37	37	81.2	95.1	64×3×3
UniFormer-B (Li et al., 2021)	IN-1K	3108	50	50	83.0	95.4	$32 \times 4 \times 3$
TimeSformer-L (Bertasius et al., 2021)	IN-21K	7140	121	121	80.7	94.7	64×1×3
ViViT-L/16×2 FE (Arnab et al., 2021)	IN-21K	3980	311	311	80.6	92.7	$32 \times 1 \times 1$
VideoSwin-L (Liu et al., 2022)	IN-21K	7248	197	197	83.1	95.9	$32 \times 4 \times 3$
MViTv2-L (312 [†]) (Li et al., 2022)	IN-21K	42420	218	218	86.1	97.0	$32 \times 3 \times 5$
MTV-L (Yan et al., 2022)	JFT	18050	876	876	84.3	96.3	$32 \times 4 \times 3$
TokenLearner-L/10 (Ryoo et al. 2021)	IFT	48912	450	450	85.4	96.3	$64 \times 4 \times 3$
PromptCLIP A7 (Ju et al., 2021)	CLIP		-	-	76.8	93.5	$16 \times 5 \times 1$
ActionCLIP (Wang et al., 2021a)	CLIP	16890	142	142	83.8	97.1	32×10×3
X-CLIP-L/14 (Ni et al., 2022)	CLIP	7890	420	420	87.1	97.6	$8 \times 4 \times 3$
EVL ViT-L/14 (Lin et al., 2022)	CLIP	8088	368	59	87.3	-	$32 \times 3 \times 1$
AIM ViT-B/16	CLIP	606	97	11	83.9	96.3	8×3×1
AIM V11-B/16	CLIP	1214	97	11	84.5	96.6	$16 \times 3 \times 1$
AIM ViT-B/16	CLIP	2428	97	11	84.7	96.7	$32 \times 3 \times 1$
AIM ViT-L/14	CLIP	2802	341	38	86.8	97.2	$8 \times 3 \times 1$
AIM ViT-L/14	CLIP	5604	341	38	87.3	97.6	16×3×1
AIM ViT-L/14	CLIP	11208	341	38	87.5	97.7	32×3×1

Comparison: AIM v.s. PromptCLIP PromptCLIP

For all the following action recognition experiments, we inherit the best practice from the ablation studies, *i.e.* prepend / append 16 prompt vectors to category names, and only use two Transformer layers (5M parameters) for temporal modeling, for its best trade-off on performance and computational cost.

AIM

Table 7: Effect of position of Adapters. Skipmeans adding Adapters every two blocks.

Position	Tunable Param (M)	Top-1
Bottom 6	5.6	80.7
Top 6	5.6	83.3
Skip	5.6	83.2
All	11	83.9