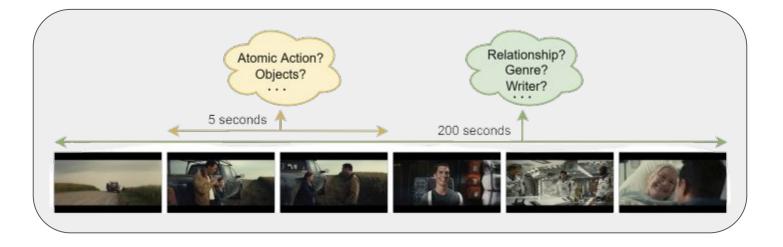
Long Movie Clip Classification with State-Space Video Models

Md Mohaiminul Islam, Gedas Bertasius

Presented by Vish Ravichandran

Introduction

Local vs. Long Prediction Tasks

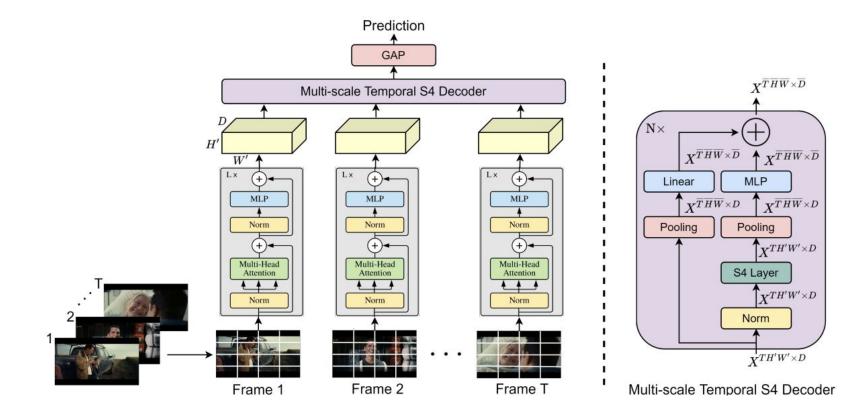


Technical Challenges & Related Work

- CNN's
 - Fail to capture necessary fine-detail for genre, director, etc. understanding
- Transformers
 - Quadratic cost of self-attention makes only feasible for short clips
- Past work
 - Structured state-space sequence (S4) by Gu *et al.*
 - Improvement on state-space modelling via HiPPo theory (i.e. clever math)
 - Long-form Video Understanding benchmark by Wu et al.
 - Series of nine long-range video classification tasks

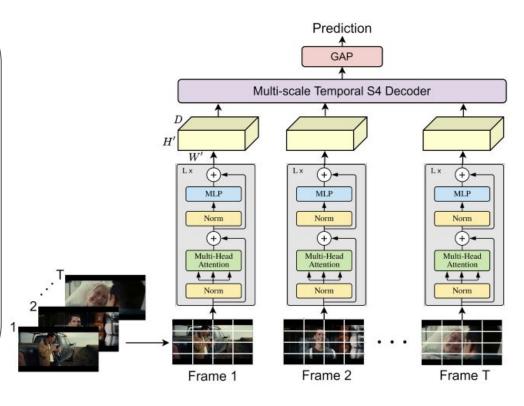
ViS4mer Model

High-level Architecture



Encoder

- Video V $\in \mathbb{R}^{T \times H \times W \times 3}$
- Split into non-overlapping patches P x P
- Patches projected into latent dimension D added to positional embedding E ∈ R^{N × D}
- $\mathbf{z}' = MHA(LN(\mathbf{z}_{in})) + \mathbf{z}_{in}$
- $\mathbf{z}_{out} = MLP(LN(\mathbf{z'})) + \mathbf{z'}$
- Transformer outputs are concatenated $X \in R^{T \times H' \times W' \times D}$
 - W' = W/P, H' = W/P



Structured State Space Sequence vs Self-attention $THW \times D$ H = hidden dimensionN× B = batch size $\mathbf{\uparrow} X^{\overline{T}\overline{H}\overline{W}\times\overline{D}}$ $\mathbf{X}^{\overline{T}\overline{H}\overline{W}\times\overline{D}}$ L = sequence length Linear MLP Tilde (~) represents log $\int X^{\overline{T}\overline{H}\overline{W}\times D}$ $\mathbf{X}^{\overline{T}\overline{H}\overline{W}\times D}$ Pooling Pooling Self-attention State-space $\mathbf{Y}TH'W' \times D$ Parameters H^2 H^2 S4 Laver $B(L^2 + HL)$ Memory BLH $\mathbf{v}TH'W' \times D$ $B(L^2H + LH^2) BH(\tilde{H} + \tilde{L}) + B\tilde{L}H$ Training $L^2H + LH^2$ H^2 Inference Norm

 $\mathbf{Y}^{TH'W' \times D}$

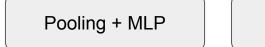
SSM layer to Structured state space sequence (S4) layer

- u(t) = 1-dimension input signal
- x(t) = N-dimension hidden state
- y(t) = 1-dimension output signal

Simple SSM

S4 by Gu et al.

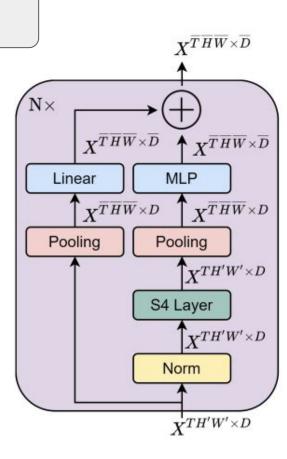
S4

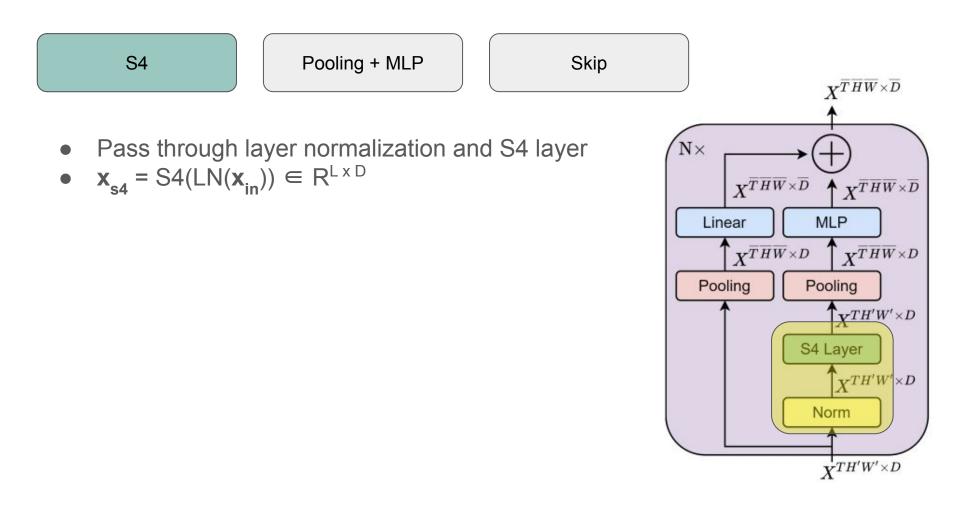


- Multi-scale decoder with N blocks
- Gradually decreases spatio-temporal features to prevent overfitting
- Input tensor X is flattened to $\mathbf{x}_{in} = (x_1, \dots, x_l)$
 - L = T * H' * W'

$$\circ$$
 $\mathbf{x}_{i} \in \mathbb{R}^{D}$

$$\mathbf{x}_{in} \in \mathbb{R}^{L \times D}$$



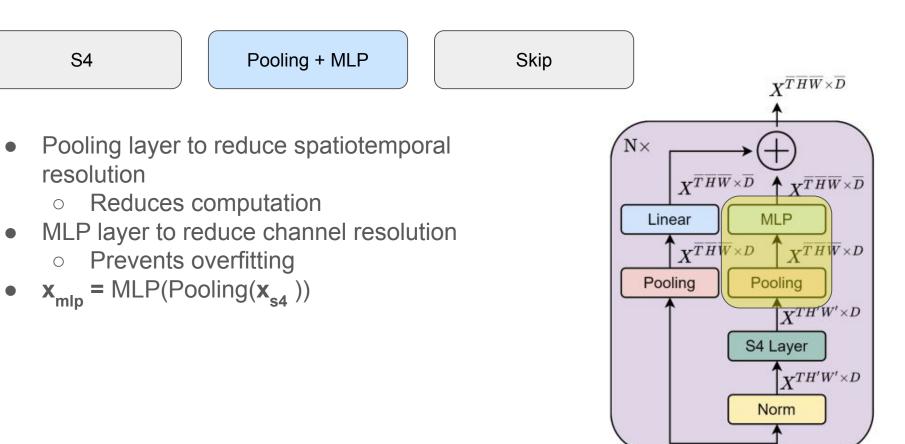


S4

Ο

Ο

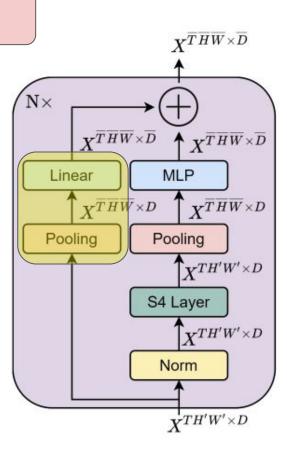
resolution



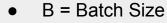
 $X^{TH'W' imes D}$

- Skip connection uses pooling to reduce spatiotemporal resolution
- Linear layer to reduce channel dimension
- **x**_{skip} = Pooling(Linear(**x**_{in}))

•
$$\mathbf{x}_{out} = \mathbf{x}_{skip} + \mathbf{x}_{mlp}$$



Loss Functions



- K = # Classes
- y = label
- x = input
- F = model
- θ = params

Cross-entropy for Classification $L_{ce}(\mathcal{F}_{\mathcal{C}}(\theta)) = -\frac{1}{B} \sum_{i=1}^{B} \sum_{j=1}^{K} y_{j}^{i} \log(\mathcal{F}_{\mathcal{C}}(\theta; x^{i})_{j})$

MSE for Regression
$$L_{mse}(\mathcal{F}_{\mathcal{R}}(heta)) = -rac{1}{B}\sum_{i=1}^{B}(y^i-\mathcal{F}_{\mathcal{R}}(heta;x^i))^2$$

Experiments

Implementation Details

- Frame size: H x W = 224 x 224
- Patch size: P x P = 16 x 16
- Encoder: L = 24 block transformer architecture pretrained on ImageNet
 - \circ Hidden Dimension: D = 1024
- Decoder: N = 3 block S4 architecture
 - Pooling kernel 1 x 2 x 2
 - Stride 1 x 2 x 2
 - Padding 1 x 1 x 1
 - MLP layer reduces channel dimension by 2
- Optimizer: Adam
 - Learning rate: 10⁻³
 - Weight decay: 0.01
- Batch Size: 16

Long-form Video Understanding (LVU) Benchmarks

- Made from MovieClip dataset containing ~30K 1-3min clips from ~3K movies
 - ViTrained on 60s clips
- Content understanding—predicting...
 - Relationship
 - Speaking style
 - Scene/place
- Metadata prediction—predicting...
 - Director
 - Genre
 - Writer
- User engagement—predicting...
 - YouTube like ratio
 - YouTube popularity

Results

- Content & Metadata use Top-1 Accuracy
- User uses MSE

	Sequence	Content (\uparrow)				User (\downarrow)				
	Model	Relation	Speak	Scene	Director	Genre	Writer	Year	Like	Views
SlowFast+NL $[16, 51]$	non-local	52.40	35.80	54.70	44.90	53.00	36.30	52.50	0.38	3.77
VideoBERT [44]	self-attention	52.80	37.90	54.90	47.30	51.90	38.50	36.10	0.32	4.46
Obj. Transformer [53]	self-attention	53.10	39.40	56.90	51.20	54.60	34.50	39.10	0.23	3.55
Long Seq. Transformer	self-attention	52.38	37.31	62.79	56.07	52.70	42.26	39.16	0.31	3.83
ViS4mer	state-space	57.14	40.79	67.44	62.61	54.71	48.8	44.75	0.26	3.63

Performance on Breakfast and COIN datasets

- Breakfast: ~1.7k videos with 10 cooking activities
- COIN: ~11.8k videos with 180 tasks
- Distant Supervision requires HowTo100M pretraining

Model	Pretraining Dataset	Pretraining Samples	$Accuracy(\uparrow)$
VideoGraph [24]	Kinetics-400	306K	69.50
Timeception [23]	Kinetics-400	306K	71.30
GHRM [59]	Kinetics-400	306K	75.50
Distant Supervision [33]	HowTo100M	136M	89.90
ViS4mer	Kinetics-600	495K	88.17

(a) Long-range procedural activity classification on the Breakfast [30] dataset.

(b) Long-range procedural activity classification on the COIN [45] dataset.

Model	Pretraining Dataset	Pretraining Samples	$Accuracy(\uparrow)$
TSN [46]	Kinetics-400	306K	73.40
Distant Supervision [33]	HowTo100M	136M	90.00
ViS4mer	Kinetics-600	495 K	88.41

Qualitative Results

(a) Task: 'Relationship', Ground Truth Label: 'friends', Our Prediction: 'friends'

(b) Task: 'Relationship', Ground Truth Label: 'boyfriend-girlfriend', Our Prediction: 'ex_boyfriend-ex_girlfriend'

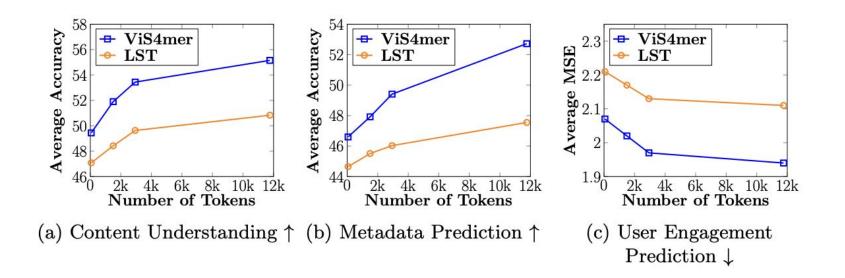
(c) Task: 'Genre', Ground Truth Label: 'Action/Crime/Adventure', Our Prediction: 'Action/Crime/Adventure'

(d) Task: 'Genre', Ground Truth Label: 'Comedy', Our Prediction: 'Romance'

Ablations

Accuracy by Number of Tokens

- S4 layer is superior to self-attention layers
- Gap increases as token size increases



Training Speed & Memory Utilization by Token Size

- Overall S4 requires 8x less memory and 2.63x faster than self-attention on long videos (i.e. 11,760 tokens)
- Gap grows significantly with greater token sizes

# of Tokens	Samples	s/s (↑)	GPU Memory $(GB)(\downarrow$				
	ViS4mer LST		ViS4mer	LST			
60	12.46	8.85	2.23	2.45			
1,500	8.27	6.31	3.61	3.99			
2,940	6.25	4.47	3.67	5.43			
11,760	4.95	1.88	5.15	41.38			

Comparison to Non-quadratic w.r.t. Input Length Methods

- Replace S4 Layer with other self-attention alternatives
- State-space still outperforms in almost LVU benchmarks

	Content (\uparrow)]	Metadata (\uparrow)						
S	Relation	Speak	Scene	Director	Genre	Writer	Year	Like	Views	Sam./s (\uparrow)	Mem (\downarrow)
Self-attention	52.38	37.31	62.79	56.07	52.70	42.26	39.16	0.31	3.83	1.88	41.38
Performer	50.00	38.80	60.46	58.87	49.45	48.21	41.25	0.31	3.93	4.67	5.93
Orthoformer	50.00	39.30	66.27	55.14	55.79	47.02	43.35	0.29	3.86	4.85	5.56
State-space	57.14	40.79	67.44	62.61	54.71	48.8	44.75	0.26	3.63	4.95	5.15

Significance of Dimension Reduction

- Multi-scale decoder provides best performance on LVU benchmarks
 - MLP/Linear layer for channel reduction
 - Pooling layers for spatiotemporal reduction
- ViS4mer beats vanilla S4 by wide margin

10	oning	Scanng		Metadata()	Oser(4)	Dampies/S()	$\operatorname{Memory}(GD)(\downarrow)$
	X	X	49.53	49.26	2.30	2.25	7.27
	1	×	48.96	49.77	2.10	3.98	5.96
	X	1	52.25	48.79	2.09	4.12	5.95
	\checkmark	\checkmark	55.12	52.72	1.94	4.95	5.15

Pooling Scaling Content(\uparrow) Motodata(\uparrow) User(1) Samples ($f(\uparrow)$ Memory(CB)(1)

Short-range Encoders

• ViS4mer with ViT encoder outperforms in 6/9 tasks

		Content (\uparrow)			13 14	User (\downarrow)				
Model Encoder		Relation	Speak	Scene	Director	Genre	Writer	Year	Like	Views
Obj. Trans. [53]	SlowFast [16]	53.10	39.40	56.90	51.20	54.60	34.50	39.10	0.23	3.55
	ViT [13]	54.76	33.17	52.94	47.66	52.74	36.30	37.76	0.30	3.68
31	SlowFast [16]	59.52	40.29	60.46	53.27	52.74	42.85	39.86	0.27	3.70
ViS4mer	ConvNeXt [37]	59.52	38.30	62.79	57.00	54.40	45.83	42.65	0.30	3.74
v 154mer	Swin $[35]$	54.76	37.31	61.62	56.07	49.45	47.61	39.86	0.31	3.56
	ViT [13]	57.14	40.79	67.44	62.61	54.71	48.8	44.75	0.26	3.63

Varying Training Video Length

• ViS4mer yields sharp gains in longer training videos due to more effective long-range temporal reasoning

