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Summary of the Arguments

1. One Model Rule Them All
2. Improve Training Efficiency
3. Better Results



Argument #1 One Model Rule Them All

e Less training time
e Reuse one model one multiple image segmentation tasks



Argument #2 Improve Training Efficiency

Memory requirement reduced by 3x

Balance computation with model performance, especially for small objects



Argument #3 Better Results

The Mask2Former outperforms SegFormer on both Cityscapes and ADE20K datasets. Particularly, it obtains a 6% mIOU
gain on the latter, setting a new-state-of-the-art by 2021 without being computational burdensome.

Cityscapes Dataset Mask2Former SegFormer
Crop Size 512*1024 1024*1024
Training Iterations 90K 160K
Do Infernce on 1024*2048 (whole image)  1024*1024
Batch Size 16 8
mlOU 84.5(Swin-B) 84
Params 107M (Swin-B) 84.7M
panoplic model instance model semantic model
method backbone PQ(ss) PQ(ms.) AP& mloUg, AP AP50 mloU (s.s.)  mloU (m.s.)
RS0 60.3 321 8.7
Panoptic-DeepLab [11] | X71[15] 63.0 64.1 353 80.5
SWideRNet [9] | 66.4 67.5 0.1 822
Panoptic FCN [31] Swin-L' 65.9 -
Segmenter [45] ViTL' 81.3
SETR [64] ViTL! 822
SegFormer [59] MiT-BS 84.0
RS0 62.1 313 75 374 619 794 822
RI01 624 311 78.6 385 639 80.1 81.9
Swin-T 639 39.1 80.5 39.7 669 82.1 83.0
Mask2Forme: S
) | ovins 618 07 818 | a8 704 826 8.6
Swin-B' 66.1 23 827 20 68.8 833 84.5
Swin-L' 66.6 43.6 829 43.7 74 833 843
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ADE20K Dataset Mask2Former SegFormer
Crop Size 6407640 512*512
Training Iterations 90K 160K
Batch Size 16 16
mlOU 57.3 (Swin-L) 518
Params 215M 84.7TM
Flops 403G 183.3G
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Arguments



Simple and lightweight design

e No widely-used tricks, such as auxiliary losses
e No positional encoding, so no interpolation when dealing with higher resolution
images
e Lightweight decoder only has at most 3.3M parameters whereas theirs has ~20M
o  Our decoder only consist of MLP layers while theirs uses a transformer
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Can be used for latency-critical real-time applications

e Our BO model achieves a high mloU and high FPS with a much lower number

of FLOPS and only 3.8M parameters

e Robust to common corruptions such as weather conditions

Method | Encoder | Params | | ADEZIE ‘ Cityscapes

| | | Flops | FPST mloU*t | Flops| FPSt mloU*
FCN [1] MobileNetV2 9.8 39.6 64.4 19.7 317.1 14.2 61.5
ICNet [11] - - - - - - 30.3 67.7
“E’ PSPNet [17] MobileNetV2 13.7 52.9 57 29.6 4234 11.2 70.2
= | DeepLabV3+ [20] MobileNetV2 154 69.4 43.1 34.0 555.4 8.4 752
E 84 50.5 374 125.5 152 76.2
: - - - 51.7 26.3 753
SegFormer (Ours) MiT-BO 3.8 315 371 737
17.7 47.6 71.9

CNN Method



Comparable performance despite earlier publication

60.8 253 95:7 50.3/51.1 1240.6 82.3/83.9

MiT-B5: 84.7M
M2F-Swin-B: 107M

MiT-B4: 64.1M
M2F-Swin-S: 69M




19.0 49.4/50.0 ‘

MiT-B3 performs
better than
Mask2-Swin-T with
the same number of
parameters

Swin-S 512 x 512 513 69M 98G
MiudliSF ornser: (ours) Swin-B 640 x 640 524 107M 223G
Swin-B* 640 x 640 53.9 107M 223G




