Masked-attention Mask Transformer for Universal Image Segmentation (Mask2Former)

Presented by Louie Lu, Chongyi Zheng, Mingcheng Hu

Summary of the Arguments

- 1. One Model Rule Them All
- 2. Improve Training Efficiency
- 3. Better Results

Argument #1 One Model Rule Them All

- Less training time
- Reuse one model one multiple image segmentation tasks

Argument #2 Improve Training Efficiency

Memory requirement reduced by 3x

Balance computation with model performance, especially for small objects

Argument #3 Better Results

The Mask2Former outperforms SegFormer on both Cityscapes and ADE20K datasets. Particularly, it obtains a 6% mIOU gain on the latter, setting a new-state-of-the-art by 2021 without being computational burdensome.

Cityscapes Dataset	Mask2Former	SegFormer
Crop Size	512*1024	1024*1024
Training Iterations	90K	160K
Do Infernce on	1024*2048 (whole image)	1024*1024
Batch Size	16	8
mIOU	84.5(Swin-B)	84
Params	107M (Swin-B)	84.7M

Semantic Segmentation on ADE20K val

15	Mask2Former (Swin-L-FaPN, multiscale)	57.7	×	Masked-attention Mask Transformer for Universal Image Segmentation	0	Ð	2021
22	Mask2Former (Swin-L-FaPN)	56.4	×	Masked-attention Mask Transformer for Universal Image Segmentation	0	Ð	2021
39	SegFormer-B5 (MS, 87M #Params, ImageNet-1K pretrain)	51.8	×	SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers	0	÷	2021

		panoptic model				instance model		semantic model		
method	backbone	PQ (s.s.)	PQ (m.s.)	APTh	mIoUpan	AP	AP50	mIoU (s.s.)	mIoU (m.s.)	
	R50	60.3		32.1	78.7	-	-			
Panoptic-DeepLab [11]	X71 [15]	63.0	64.1	35.3	80.5	-	-	-	-	
	SWideRNet [9]	66.4	67.5	40.1	82.2	-	-	-		
Panoptic FCN [31]	Swin-L [†]	65.9		-	-	-	-	-		
Segmenter [45]	ViT-L [†]	-		-		-		-	81.3	
SETR [64]	ViT-L [†]		-	-	-	100	-		82.2	
SegFormer [59]	MiT-B5	-	-	-	-	-	-	-	84.0	
	R50	62.1		37.3	77.5	37.4	61.9	79.4	82.2	
	R101	62.4		37.7	78.6	38.5	63.9	80.1	81.9	
	Swin-T	63.9	-	39.1	80.5	39.7	66.9	82.1	83.0	
Mask2rormer (ours)	Swin-S	64.8	-	40.7	81.8	41.8	70.4	82.6	83.6	
	Swin-B [†]	66.1	-	42.8	82.7	42.0	68.8	83.3	84.5	
	Swin-L [†]	66.6	-	43.6	82.9	43.7	71.4	83.3	84.3	

ADE20K Dataset	Mask2Former	SegFormer
Crop Size	640*640	512*5 <mark>1</mark> 2
Training Iterations	90K	160K
Batch Size	16	16
mIOU	57.3 (Swin-L)	51.8
Params	215M	84.7M
Flops	403G	183.3G

Summary of the Arguments

- 1. One Model Rule Them All
- 2. Improve Training Efficiency
- 3. Better Results

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Authors: Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo

Submitted May 31, 2021; Last Revised October 28, 2021

Presented By: Alex Georgiev, David Zhang, Pan Lu

Arguments

Simple and lightweight design

- No widely-used tricks, such as auxiliary losses
- No positional encoding, so no interpolation when dealing with higher resolution images
- Lightweight decoder only has at most 3.3M parameters whereas theirs has ~20M

VS

 \circ $\,$ $\,$ Our decoder only consist of MLP layers while theirs uses a transformer $\,$

Can be used for latency-critical real-time applications

- Our B0 model achieves a high mIoU and high FPS with a much lower number of FLOPS and only 3.8M parameters
- Robust to common corruptions such as weather conditions

	Method	Encoder	Params		ADE20K	.	Cityscapes		
				Flops ↓	FPS \uparrow	mIoU ↑	Flops ↓	FPS \uparrow	mIoU↑
	FCN [1]	MobileNetV2	9.8	39.6	64.4	19.7	317.1	14.2	61.5
Je	ICNet [11]	-	-	-	-	-	-	30.3	67.7
	PSPNet [17]	MobileNetV2	13.7	52.9	57.7	29.6	423.4	11.2	70.2
Ë	DeepLabV3+ [20]	MobileNetV2	15.4	69.4	43.1	34.0	555.4	8.4	75.2
eal-			[8.4	50.5	37.4	125.5	15.2	76.2
R	SecEermon (Ours)	MET DO	20	-	-	-	51.7	26.3	75.3
	Segrormer (Ours)	MI1-B0	3.8	-	-	-	31.5	37.1	73.7
				-	-	-	17.7	47.6	71.9

Comparable performance despite earlier publication

(a) Accuracy, parameters and flops as a function of the model size on the three datasets. "SS" and "MS" means single/multi-scale test.												
Encoder	Params		n A	ADE20K		Cityscapes	COCO-Stuff					
Model Size	Encoder	Decoder	Flops↓	mIoU(SS/MS) ↑	Flops↓	mIoU(SS/MS) ↑	Flops↓	mIoU(SS) ↑				
MiT-B0	3.4	0.4	8.4	37.4 / 38.0	125.5	76.2 / 78.1	8.4	35.6				
MiT-B1	13.1	0.6	15.9	42.2/43.1	243.7	78.5 / 80.0	15.9	40.2				
MiT-B2	24.2	3.3	62.4	46.5/47.5	717.1	81.0 / 82.2	62.4	44.6				
MiT-B3	44.0	3.3	79.0	49.4 / 50.0	962.9	81.7 / 83.3	79.0	45.5				
MiT-B4	60.8	3.3	95.7	50.3 / 51.1	1240.6	82.3 / 83.9	95.7	46.5				
MiT-B5	81.4	3.3	183.3	51.0 / 51.8	1460.4	82.4 / 84.0	111.6	46.7				

Table 1: Ablation studies related to model size, encoder and decoder design.

		panoptic model				instance model		semantic model	
method	backbone	PQ (s.s.)	PQ (m.s.)	AP_{pan}^{Th}	mIoU _{pan}	AP	AP50	mIoU (s.s.)	mIoU (m.s.)
	R50	60.3	-	32.1	78.7	-	-	-	-
Panoptic-DeepLab [11]	X71 [15]	63.0	64.1	35.3	80.5	-	-	-	-
	SWideRNet [9]	66.4	67.5	40.1	82.2	-	-	-	-
Panoptic FCN [31]	Swin-L [†]	65.9	-	-	-	-	-	-	-
Segmenter [45]	ViT-L [†]	-	-	-	-	-	-	-	81.3
SETR [64]	ViT-L [†]	-	-	-	-	-	-	-	82.2
SegFormer [59]	MiT-B5	-	-	-	-	-	-	-	84.0
	R50	62.1	-	37.3	77.5	37.4	61.9	79.4	82.2
	R101	62.4	-	37.7	78.6	38.5	63.9	80.1	81.9
Magh (Dama an (aura)	Swin-T	63.9	-	39.1	80.5	39.7	66.9	82.1	83.0
Wask2Former (ours)	Swin-S	64.8	-	40.7	81.8	41.8	70.4	82.6	83.6
	Swin-B [†]	66.1	-	42.8	82.7	42.0	68.8	83.3	84.5
	Swin-L [†]	66.6	-	43.6	82.9	43.7	71.4	83.3	84.3

MiT-B5: 84.7M M2F-Swin-B: 107M

MiT-B4: 64.1M M2F-Swin-S: 69M

Encoder Params			ADE20K	0	Cityscapes	COCO-Stuff		
Model Size	Encoder	Decoder	Flops ↓	mIoU(SS/MS) ↑	Flops↓	mIoU(SS/MS) ↑	Flops↓	mIoU(SS) ↑
MiT-B0	3.4	0.4	8.4	37.4 / 38.0	125.5	76.2 / 78.1	8.4	35.6
MiT-B1	13.1	0.6	15.9	42.2 / 43.1	243.7	78.5 / 80.0	15.9	40.2
MiT-B2	24.2	3.3	62.4	46.5/47.5	717.1	81.0 / 82.2	62.4	44.6
MiT-B3	44.0	3.3	79.0	49.4 / 50.0	962.9	81.7 / 83.3	79.0	45.5
MiT-B4	60.8	3.3	95.7	50.3 / 51.1	1240.6	82.3 / 83.9	95.7	46.5
MiT-B5	81.4	3.3	183.3	51.0 / 51.8	1460.4	82.4 / 84.0	111.6	46.7

	method	backbone	crop size	mIoU (s.s.)	mIoU (m.s.)	#params.	FLOPs
	MaskFormer [14]	R50	512×512	44.5	46.7	41M	53G
Ž	WIASKFOITHEI [14]	R101	512×512	45.5	47.2	60M	73G
Ð	Mask 2 Former (ours)	R50	512×512	47.2	49.2	44M	71G
	Wiask2Former (ours)	R101	512×512	47.8	50.1	63M	90G
-	Swin-UperNet [36, 58]	Swin-L [†]	640×640	-	53.5	234M	647G
	FaPN-MaskFormer [14, 39]	Swin-L [†]	640×640	55.2	56.7	-	-
	BEiT-UperNet [2,58]	$BEiT-L^{\dagger}$	640×640	-	57.0	502M	-
SS		Swin-T	512×512	46.7	48.8	42M	55G
ono		Swin-S	512×512	49.8	51.0	63M	79G
lckt	MaskFormer [14]	Swin-B	640×640	51.1	52.3	102M	195G
r ba		Swin-B [†]	640×640	52.7	53.9	102M	195G
me		Swin-L [†]	640×640	54.1	55.6	212M	375G
sfoi		Swin-T	512×512	47.7	49.6	47M	74G
ran		Swin-S	512×512	51.3	52.4	69M	98G
Τ	Mask2Formor (ours)	Swin-B	640×640	52.4	53.7	107M	223G
	wask2Former (ours)	Swin-B ^{\dagger}	640×640	53.9	55.1	107M	223G
		Swin-L [†]	640×640	56.1	57.3	215M	403G
		Swin-L-FaPN [†]	640×640	56.4	57.7	217M	-

MiT-B3 performs better than Mask2-Swin-T with the same number of parameters