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Problem Overview

* The goal is to track multiple pedestrians in a given
video sequence.




Prior Work

* Prior approaches are effective but complicated.
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to Detect, ICCV 2017 “Flow-Guided Feature Aggregation for
Video Object Detection”, ICCV 2017
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Motivation

« Spatial and temporal modeling require different types of
models.

* Which of these are more important for the problem of
object tracking?
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_ Spatial Modeling: Temporal Modeling:
+ 2D Convolution Based. . i. 3D Convolution Based.

Large spatial resolution (~1000x1000).§ Small spatial resolution (~200x200).

Static image inputs. Long video clips as inputs.

. * . .
----------------------------------------------------------------------------------------------------------------------------------------------------------------

/ Frame-level detection

) 4
X Tracking J



Motivation

« Spatial and temporal modeling require different types of
models.

* Which of these are more important for the problem of
object tracking?

~ Soatial Modelie: i o
- 2D Convolution Based. i+ 3D Convolution Based. 5

« Large spatial resolution (~1000x1000). Small spatial resolution (~200x200).

« Static image inputs. Long video clips as inputs.

_

* .
--------------------------------------------------------------------------------

J Frame-level detection

b 4
X Tracking J



Faster R-CNN

e The classification head assigns an object score to each
region proposal (i.e., the likelihood of the proposal showing
a pedestrian).

e The regression head refines the bounding box location
tightly around an object.
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Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks”, NIPS 2015



Tracktor

« The authors convert a detector into a tracker that performs
multiple object tracking.

* The method does not require any tracking specific training,
nor complex optimization at test time.
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Rol Pooling

* Rol pooling is applied on the features of the current frame
(Frame t) but with the previous bounding box coordinates
(Frame t-1).

Bounding box from Frame t-1
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Experiments

* The experiments are done on the multi-object tracking
benchmark MOTChallenge, which contains 7 training and
testing video sequences.

e Only pedestrians are annotated and evaluated.

Video Index Resolution FPS Length (frames) Boxes Tracks Density

02 1920 x 1080 30 600 18581 62 31.0
04 1920 x 1080 30 1050 47557 83 45.3
05 640 x 480 14 837 6917 133 8.3
09 1920 x 1080 30 525 5325 26 10.1
10 1920 x 1080 30 634 12839 57 19.6
11 1920 x 1030 30 900 9436 75 15.5

13 1920 x 1080 25 750 11642 110 8.3




Evaluation Metrics

* When objects are successfully detected, but not tracked,
they are identified as an identity switch (IDSW).
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Evaluation Metrics

* When objects are successfully detected, but not tracked,
they are identified as an identity switch (IDSW).

e Atarget is mostly tracked (MT) if it is successfully tracked
for at least 80% of its life span.

e If a track is only recovered for less than 20% of its total
length, it is said to be mostly lost (ML).

* The Identity F1 Score (IDF1) measures the identity
preservation of a method.

e Multiple Object Tracking Accuracy (MOTA) metric focuses
on object coverage.
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Results

e This ablation study illustrates multiple aspects on the
performance of Tracktor.

Method MOTA * IDF1+ MTt ML | FP| EN| IDSw. |
D&T [18] 50.1 249 231 27.1 3561 52481 2715
Tracktor-no-FPN 574 587 302 225 2821 45042 1981

Tracktor 61.5 61.1 335 20.7 367 42903 1747
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Method MOTA * IDF1+ MT1t ML | FP] FEN| IDSw. |
D&T [18] 50.1 249 231 27.1 3561 52481 2715
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Improving the quality of object detection leads to large
improvements in tracking as well.



Results

e Comparison of Tracktor with other modern tracking
methods.

Mecthod MOTA 4+ IDF1 + MT+ ML) FP] FNJ IDSw .
Tracklor++ 535 523 195 36.6 12201 248047 2072
. eHAF [55) SI8  S4.7 234 379 33212 236772 1834
= FWT[2]] 513 476 214 352 24101 247921 2648
s jce [20] 512 545 209 37.0 25937 247822 1802
z MOTDTI7 [9) 509 527 175 357 24069 250768 2474
MHT.DAM [72] 507 472 208 369 22875 252889 2314
Tracklur++ 544 525 190 369 3280 79149 €82
o HOC (44] 493 507 17.8 399 5333 86795 391
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= APHWDPLp([4] 385 471 37 374 4005 33203 386
5 AMIRI1S [56) 376 460 158 268 7933 29397 1026
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Results

A summary of the fundamental characteristics of Tracktor
and other state-of-the-art trackers.

Method Online Graph relD Appearance model Motion model Other
Tracktor X

Tracktor++ X X Camera

FWT [23] Dense I'ace detection
J1CC [20] Dense Poinl trajectorics
MOTDT17 [Y] X P X Kalman

MHT_DAM | 52] Sparse X Kalman




Results

* A summary of the fundamental characteristics of Tracktor
and other state-of-the-art trackers.

Method Online Graph relD Appearance model Motion model Other
CTracklor X )

Tracktor++ X X Camera

FWT 23] Dense I'ace detection

J1CC [20] Dense Poinl trajectorics

MOTDTI17 [Y] X % X Kalman

MHT_DAM [52] Sparse X Kalman

Compared to prior approaches, the proposed method is
much simpler.



Contributions

* A simple method that demonstrates how to convert a
standard detector into a tracker.

« Despite the simplicity, the proposed method achieves
state-of-the-art performance on multiple pedestrian
tracking benchmarks.

* Provides a simple yet powerful baseline for subsequent
research to build on.
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* |s detection all you need for tracking?



