Tracking without bells and whistles ICCV 2019

Philipp Bergmann, Tim Meinhardt, Laura Leal-Taixe

Problem Overview

• The goal is to track multiple pedestrians in a given video sequence.

Prior Work

• Prior approaches are effective but complicated.

Detect to Track and Track to Detect, ICCV 2017

"Flow-Guided Feature Aggregation for Video Object Detection", ICCV 2017

Motivation

- Spatial and temporal modeling require different types of models.
- Which of these are more important for the problem of object tracking?

Spatial Modeling:

- 2D Convolution Based.
- Large spatial resolution (~1000x1000).
- Static image inputs.

Temporal Modeling:

- 3D Convolution Based.
- Small spatial resolution (~200x200).
- Long video clips as inputs.

Frame-level detection

Tracking

Motivation

- Spatial and temporal modeling require different types of models.
- Which of these are more important for the problem of object tracking?

Spatial Modeling:

- 2D Convolution Based.
- Large spatial resolution (~1000x1000).
- Static image inputs.

Temporal Modeling:

- 3D Convolution Based.
- Small spatial resolution (~200x200).
- Long video clips as inputs.

Frame-level detection

Tracking

- The classification head assigns an object score to each region proposal (i.e., the likelihood of the proposal showing a pedestrian).
- The regression head refines the bounding box location tightly around an object.

Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

- The authors convert a detector into a tracker that performs multiple object tracking.
- The method does not require any tracking specific training, nor complex optimization at test time.

- The authors convert a detector into a tracker that performs multiple object tracking.
- The method does not require any tracking specific training, nor complex optimization at test time.

Rol Pooling

 Rol pooling is applied on the features of the current frame (Frame t) but with the previous bounding box coordinates (Frame t-1).

- The authors convert a detector into a tracker that performs multiple object tracking.
- The method does not require any tracking specific training, nor complex optimization at test time.

- The authors convert a detector into a tracker that performs multiple object tracking.
- The method does not require any tracking specific training, nor complex optimization at test time.

- The authors convert a detector into a tracker that performs multiple object tracking.
- The method does not require any tracking specific training, nor complex optimization at test time.

Experiments

- The experiments are done on the multi-object tracking benchmark MOTChallenge, which contains 7 training and testing video sequences.
- Only pedestrians are annotated and evaluated.

Video Index	Resolution	FPS	Length (frames)	Boxes	Tracks	Density
02	1920 imes 1080	30	600	18581	62	31.0
04	1920 imes 1080	30	1050	47557	83	45.3
05	640 imes 480	14	837	6917	133	8.3
09	1920 imes 1080	30	525	5325	26	10.1
10	1920×1080	30	654	12839	57	19.6
11	1920 imes 1080	30	900	9436	75	15.5
13	1920 imes 1080	25	750	11642	110	8.3

• When objects are successfully detected, but not tracked, they are identified as an identity switch (IDSW).

- When objects are successfully detected, but not tracked, they are identified as an identity switch (IDSW).
- A target is mostly tracked (MT) if it is successfully tracked for at least 80% of its life span.

- When objects are successfully detected, but not tracked, they are identified as an identity switch (IDSW).
- A target is mostly tracked (MT) if it is successfully tracked for at least 80% of its life span.
- If a track is only recovered for less than 20% of its total length, it is said to be mostly lost (ML).

- When objects are successfully detected, but not tracked, they are identified as an identity switch (IDSW).
- A target is mostly tracked (MT) if it is successfully tracked for at least 80% of its life span.
- If a track is only recovered for less than 20% of its total length, it is said to be mostly lost (ML).
- The Identity F1 Score (IDF1) measures the identity preservation of a method.

- When objects are successfully detected, but not tracked, they are identified as an identity switch (IDSW).
- A target is mostly tracked (MT) if it is successfully tracked for at least 80% of its life span.
- If a track is only recovered for less than 20% of its total length, it is said to be mostly lost (ML).
- The Identity F1 Score (IDF1) measures the identity preservation of a method.
- Multiple Object Tracking Accuracy (MOTA) metric focuses on object coverage.

$$1 - \frac{\sum_{t} (FP_t + FN_t + IDSW_t)}{\sum_{t} GT_t}.$$

• This ablation study illustrates multiple aspects on the performance of Tracktor.

Method	MOTA \uparrow	$\mathrm{IDF1}\uparrow$	$\mathbf{MT}\uparrow$	$\mathbf{ML}\downarrow$	F₽↓	$FN \downarrow$	ID Sw. \downarrow
D&T [18]	50.1	24.9	23.1	27.1	3561	52481	2715
Tracktor-no-FPN	57.4	58.7	30.2	22.5	2821	45042	1981
Tracktor	61.5	61.1	33.5	20.7	367	42903	1747

• This ablation study illustrates multiple aspects on the performance of Tracktor.

Method	MOTA \uparrow	IDF1 \uparrow	$\mathbf{MT} \uparrow$	$M\!L\downarrow$	F₽↓	$FN \downarrow$	ID Sw. \downarrow
D&T [18]	50.1	24.9	23.1	27.1	3561	52481	2715
Tracktor-no-FPN	57.4	58.7	30.2	22.5	2821	45042	1981
Tracktor	61.5	61.1	33.5	20.7	367	42903	1747

Improving the quality of object detection leads to large improvements in tracking as well.

• Comparison of Tracktor with other modern tracking methods.

	Method	MOTA \uparrow	$\mathrm{I}\mathbf{D}\mathbf{F}^{1}\uparrow$	$MT\uparrow$	$M \mathbb{L} \!\downarrow$	$FP \downarrow$	$FN\downarrow$	ID Sw. \downarrow
	Tracktor++	53.5	52.3	19.5	36.6	12201	248047	2072
	eHAF [58]	51.8	54.7	23.4	37.9	33212	236772	1834
Ξ	FWT [23]	51.3	47.6	21.4	35.2	24101	247921	2648
ğ	jCC [30]	51.2	54.5	20.9	37.0	25937	247822	1802
2	MOTDT17 [9]	50.9	52.7	17.5	35.7	24069	250768	2474
	MHT_DAM [32]	50.7	47.2	20.8	36.9	22875	252889	2314
	Tracktor++	54.4	52.5	19.0	36.9	3280	79149	682
wn.	HCC [44]	49.3	50.7	17.8	39.9	5333	86795	391
Ĕ	LMP [59]	48.8	51.3	18.2	40.1	6654	86245	481
ğ	GCRA [43]	48.2	48.6	12.9	41.1	510 4	88586	821
2	FWT [23]	47.8	44.3	19. 1	38.2	8886	85487	852
	MOTDT [9]	47.6	50.9	15.2	38.3	9253	85431	792
15	Tracktor++	44.1	46.7	18.0	26.2	6477	26577	1318
8	AP_HWDPL_p [8]	38.5	47.1	8.7	37.4	4005	33203	586
Б	AMIR15 [56]	37.6	46.0	15.8	26.8	7933	29397	1026
ž	JointMC [30]	35.6	45.1	23.2	39.3	10580	28508	457
8	RAR15pub [17]	35.1	45.4	13.0	42.3	6771	32717	381

• Comparison of Tracktor with other modern tracking methods.

	Method	MOTA \uparrow	$\mathbb{I} DF1\uparrow$	$MT\uparrow$	$M \mathbb{L} \!\downarrow$	$FP \downarrow$	$FN\downarrow$	ID Sw. \downarrow
7	Tracktor++	53.5	52.3	19.5	36.6	12201	248047	2072
-	eHAF [58]	51.8	54.7	23.4	37.9	33212	236772	1834
E	FWT [23]	51.3	47.6	21.4	35.2	24101	247921	2648
ğ	jCC [30]	51.2	54.5	20.9	37.0	25937	247822	1802
2	MOTDT17 [9]	50.9	52.7	17.5	35.7	24069	250768	2474
	MHT_DAM [32]	50.7	47.2	20.8	36.9	22875	252889	2314
7	Tracktor++	54.4	52.5	19.0	36.9	3280	79149	682
vo	HCC [44]	49.3	50.7	17.8	39.9	5333	86795	391
Ĩ	LMP [59]	48.8	51.3	18.2	40.1	6654	86245	481
ğ	GCRA [43]	48.2	48.6	12.9	41 .1	510 4	88586	821
2	FWT [23]	47.8	44.3	19. 1	38.2	8886	85487	852
	MOTDT [9]	47.6	50.9	15.2	38.3	9253	85431	792
12	Tracktor++	44.1	46.7	18.0	26.2	6477	26577	1318
20	AP_HWDPL_p [8]	38.5	47.1	8.7	37.4	4005	33203	586
Б	AMIR15 [56]	37.6	46.0	15.8	26.8	7933	29397	1026
Σ	JointMC [30]	35.6	45.1	23.2	39.3	10580	28508	457
8	RAR15pub [17]	35.1	45.4	13.0	42.3	6771	32717	381

• A summary of the fundamental characteristics of Tracktor and other state-of-the-art trackers.

Method	Online	Graph	reID	Appearance model	Motion model	Other
Tracktor	х					
Tracktor++	×		×		Camera	
FWT [23]		Dense				Face detection
jCC [30]		Dense				Point trajectories
MOTDT17 [9]	×		×	×	Kalman	
MHT_DAM [32]		Sparse		×	Kalman	

• A summary of the fundamental characteristics of Tracktor and other state-of-the-art trackers.

	Method	Online	Graph	reID	Appearance model	Motion model	Other
(Tracktor	×					
	Tracktor++	×		×		Camera	
	FWT [23]		Dense				Face detection
	jCC [30]		Dense				Point trajectories
	MOTDT17 [9]	×		×	×	Kalman	
	MHT_DAM [32]		Sparse		×	Kalman	

Compared to prior approaches, the proposed method is much simpler.

Contributions

- A simple method that demonstrates how to convert a standard detector into a tracker.
- Despite the simplicity, the proposed method achieves state-of-the-art performance on multiple pedestrian tracking benchmarks.
- Provides a simple yet powerful baseline for subsequent research to build on.

Discussion Questions

• What are the main limitations / assumptions made by the proposed approach?

Discussion Questions

- What are the main limitations / assumptions made by the proposed approach?
- Is detection all you need for tracking?