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Introduction - Motivation

• Motivation: Current robot manipulation only have in simulation or 
table-top experiments in the lab. (Figures from [1])

[1]. Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).



Introduction - Motivation

• WHIRL: In-the-Wild Human Imitating Robot Learning.
• 2-Step efficient real-world robot learning framework:

1. Learn a prior: Use human videos to extract a prior over the intent of the demonstrator, 
and use this to initialize our agent’s policy.

2. Improve the prior: Use an efficient real-world policy learning scheme to improve over 
the human prior using interactions. 



Introduction - Limitations of Current Methods

• Limitations of current methods:
• Reinforcement Learning (RL):

• Unsafe: While the robot interacts with the physical world, it could hurt human or itself.
• Reward function needs manually design: For different tasks/environment/robot type,

the expert needs to design different reward functions to make RL work.
• Sample inefficient: In most cases, expert can only design sparse (i.e., only a meagre 

amount of states in the state space can return a feedback signal) reward functions for
many physical world tasks. These sparse rewards make it take a long time for the robot
to learn.

• WHIRL:
• They claim WHIRL is safe.
• No reward function needed.



Introduction - Limitations of Current Methods

• Limitations of current methods:
• Imitation Learning (IL):

• Data hungry: IL methods require a large amount of robot demonstrations provided by an
oracle. However, these demonstrations could be expensive to obtain in real world.

• Poor Generalization: Hard to generalize to new tasks or different robots.
• WHIRL

• Videos of human performing tasks are much easier to obtain.
• Can easily learn different tasks. For a new robot, just change to a new human-robot

mapping.



Method - Overview

• Human Priors. WHIRL extracts a prior over the intent of the human
demonstrator, using it to initialize the agent's policy.

• Policy Learning via Interaction: an efficient real-world policy learning 
scheme that improves using interactions.



Method – Human Priors

• Human Priors. WHIRL extracts a prior over the intent of the human
demonstrator, using it to initialize the agent's policy.

• Extracting Human Priors
• Converting Human Priors to Robot Priors



Method – Human Priors

• Extracting Human Priors.
o Extracting Hand Information
o Extracting Interaction Information

• Hand Information
o ht: xt, yt, zt (3D hand location)

§ 100DOH (100 Days of Hands) detection model
§ depth camera

o θt : yaw, pitch, roll (rotation of the wrist)
§ MANO (hand Model with Articulated and Non-rigid 

defOrmations)

100DOH detection model
• location (boxes)
• side (left/right)
• contact state (P: portable object)
• what object each hand is in contact with.



Method – Human Priors

• Extracting Human Priors.
o Extracting Hand Information
o Extracting Interaction Information

• Interatcion Information
o hinteract, hmid, hend: hand location when 

the interaction starts, in process, or 
ends
§ run 100DOH detection model on every 

frame
o O1:T: commands to close or open the 

hand. T is the length of the video.
§ run 100DOH detection model on every 

frame

100DOH detection model
• location (boxes)
• side (left/right)
• contact state (N: no contact. P: portable object)
• what object each hand is in contact with.



Method – Human Priors to Robot Priors

• Given Human Video Vk, we use a heuristic function to convert 
Human Priors to Robot Priors.

fmap(hinteract, hmid, hend, θhand, O1:T) = winteract, wmid, wend, θYPH, g1:T
o winteract, wmid, wend: gripper waypoints in robot's coordinate
o θYPH: robot wrist rotation (yaw-pitch-roll format)
o g1:T: robot gripper open/close parameters.

Robot Priors Ψk

An example mapping function 
(Neural Network, not heuristic)
[2]:

[2]. Sivakumar, Aravind, Kenneth Shaw, and Deepak Pathak. "Robotic telekinesis: Learning a robotic hand imitator by watching humans on YouTube." arXiv preprint arXiv:2202.10448 (2022).



Method – Human Priors to Robot Priors

fmap(hinteract, hmid, hend, θhand, O1:T) = winteract, wmid, wend, θYPH, g1:T
o winteract, wmid, wend: gripper waypoints in robot's coordinate
o θYPH: robot wrist rotation (yaw-pitch-roll format)
o g1:T: robot gripper open/close parameters.

• The robot can directly execute Ψk to finish the task demonstrated in 
human video Vk.

• We use Ψk as an initial policy.

Robot Priors Ψk

Reaching some waypoints [1]



Method – Important Annotations

• Ψ: The robot prior extracted from Step 1.
• Ψ!: The robot prior obtained from the 𝒌𝒕𝒉 video (#video = K).
• ∆Ψ: The residual we want to learn to improve the robot prior.
• ∆Ψ!,%: The residual obtained from the 𝒌𝒕𝒉 video and 𝒎𝒕𝒉 rollout

(#rollouts = M).
• 𝑅!,%: The video taken for the 𝒎𝒕𝒉 rollout based on Ψ! + ∆Ψ!,%.



Method – Improve Robot Priors via Interaction

• The “Robot Priors” converted from “Human Priors” can only be a
rough guideline. Directly execute the robot prior can NOT lead to
success owing to:

• Differences in morphologies between human and robot hands.
• Inaccuracies in detections.
• Errors in the calibration process.

• Therefore, we need to improve the robot prior, Ψ, by adding a
residual, ∆Ψ, to the prior.
• After we learn an ideal residual, ∆Ψ, we could directly execute the
Ψ+ ∆Ψ.



Method – Improve Robot Priors via Interaction

• Now, the question is: Given a robot prior Ψ and the corresponding
video 𝑉, how to learn a ∆Ψ?
• The insights: If we use Ψ plus an initial random ∆Ψ and then rollout,

some rollouts will be “better” than some others (measured by some
metrics). With the existence of the “better”, we could do some
optimization and will get an ideal (i.e., local/global optimal) ∆Ψ after
reaching convergence.
• So the challenges are:

• How to build the optimization mechanism -> Inspired by Cross Entropy
Method (CEM)

• How to design the proper metrics -> metric-1: human-to-robot video
alignment. metric-2: maximal frame distance.



Method – Optimization Procedure
• Representation of ∆Ψ: Conditional Variational Auto-Encoder (CVAE) ->

can represent multi-modality (∆Ψ is diverse even for one task because
there’re many trajectories to perform one task)
• Condition: current video 𝑉.
• Input and output: ∆Ψ
• Inference: Given a latent vector z and the video 𝑉, can output a
∆Ψ.

• Steps
• Step 1: For each rollout, we can infer one ∆Ψ with a random z

based on the current CVAE. Then for one task, we can get M * K
rollouts based on Ψ + the inferred ∆Ψ : [< ∆Ψ!,!, 𝑅!,!	>, < ∆Ψ!,#,
𝑅!,#	>, < ∆Ψ!,$, 𝑅!,$	>, …, < ∆Ψ#,!, 𝑅#,!	>, < ∆Ψ#,#, 𝑅#,#	>, < ∆Ψ#,$,
𝑅#,$	>, …]

• Step 2: Filter elite examples, {∆Ψ}%&!'∗)∗*, with some ratio 𝑟 (e.g.,
10%) via some metrics. Use these elite examples to train the CVAE.

• Keep Step 1 and Step 2 until convergency condition is reached (my
guess is: most rollouts get very similar score from the metrics).

Step 1

Step 2



Method – Two Metrics

• Metric is used to measure how good one thing is.
• Here, there are 2 things we aim for:

1. Task Completion: The obvious one – we hope the robot could succeed to
complete the task.

2. More Exploration: It’s possible that all the rollouts cannot complete the task.
For instance, for the drawer opening task, it’s possible that the gripper
never reaches the right position if we rollout based on the robot prior. So
we need some exploration of the environment.

• Therefore, we have
• 2 CVAE to infer the ∆Ψ. One aims to complete the task. Another one aims to

make the collected rollout more diverse (i.e., increase the probability of
containing better rollouts).

• 2 metrics.



Method – Metric 1: Task Completion

• One important assumption: the effect that the agent had on the 
environment is more important than how the agent moved, since that can 
vary with different morphologies.
• This means if the environment, the robot interacts with, changes the same

as the environment, the human interacts with, then the robot probably
succeed to perform the task.
• So the metric 1 is invented to compare the difference between 2 videos

with human and robot inpainted respectively:



Method – Metric 2: More Exploration

• The metric to measure more exploration is straightforward: Aim to 
maximize the change that the agent causes in the environment.
• The actions are close to the prior, so it is likely that any changes 

caused by the agent in the environment will be meaningful and not 
destructive. 



Method – Back to
the Pseudo Code

Step 2

Step 1

CVAE Inference

Metric 1

Metric 2



Experiments

• Hardware
oRobot: Stretch Robot with 6 DoF arm and gripper
oCamera: Intel Realsense D415 depth camera

• Environment and Data Collection
o20 every-day tasks: drawers, dishwashers, fridges, etc.
odata collected in the wild setting



Experiments

• Robot Learning in the Wild
oWHIRL is able to scale to a wide 

variety of tasks.
o Training only takes a few hours.
oAble to train on diverse locations 

and settings.



Experiments

• Does policy learning iterations help?
• Can WHIRL to generalize to new 

instances?
• Can WHIRL to generalize to 

new scenes?
• How training a joint policy on 

different tasks would work?
• Can WHIRL to generalize to new 

tasks?

• a, b, c, d: train and test on 4 different tasks
• e: train and test on multiple tasks all together
• f: train on one task, test on another task

__instance
scene



Experiments

• Does policy learning iterations help?
o Yes. Almost all curves are going up.

• Can WHIRL to generalize to 
new instances?
o New instance: same task, 

same camera position but different 
object

o Compare blue curves with red curves in 
a, b, c, d.

o Depend on tasks.

• a, b, c, d: train and test on 4 different tasks
• e: train and test on multiple tasks all together
• f: train on one task, test on another task

__instance
scene



Experiments

• Can WHIRL to generalize to 
new scenes?
o New scene: same task, different 

camera position and different object
o Compare purple curves and red curves 

in (a), (b).
o good on Drawer but bad on Door, most 

likely due to large visual changes, as 
well as different geometry and 
calibrations

• a, b, c, d: train and test on 4 different tasks
• e: train and test on multiple tasks all together
• f: train on one task, test on another task

__instance
scene



Experiments

• How training a joint policy on 
different tasks would work?
o Subfigure (e): train on (a) Drawer + (b) 

Door + (c) Dishwasher, test on (a) + (b) 
+ (c)

o Red curve in (e) is almost always lower 
than any or red curve in (a), (b) or (c), 
same for blue curve.

o Multi-task training is worse than single 
task training.

• a, b, c, d: train and test on 4 different tasks
• e: train and test on multiple tasks all together
• f: train on one task, test on another task

__instance
scene



Experiments

• Can WHIRL to generalize 
to new tasks?
o Subfigure (f)

§ Red: train on Drawer, test on door
§ Blue: train on door, test on drawer

o Some degree of task-level 
generalization.

• a, b, c, d: train and test on 4 different tasks
• e: train and test on multiple tasks all together
• f: train on one task, test on another task

__instance
scene



Experiments - Ablations

• Policy Learning Iteration
• Exploration Policy
• Agent Agnostic Cost Function



Experiments - SOTA Comparison

• Behavior Cloning
• Offline RL: 4 variants of CQL
• WHIRL outperforms all previous 

methods by a large margin.



Conclusion

• This paper proposes WHIRL, an efficient real-world robot learning 
algorithm that can learn manipulation policies in-the-wild from 
human videos.
o sampling-based policy optimization strategy
o agent-agnostic representations
o exploration policy

• WHIRL is able to work on 20 different tasks in the wild, and can 
generalize to new tasks and scenes on multiple tasks.



Limitations

• The demonstrated videos must have depth information.
o Internet videos ususlly do not have it.

• Authors claim that their method is safe because all actions are around 
the robot prior. However, the robot prior is not accurate. Also, they 
adopted the exploration policy. Both these 2 could make the 
interaction process unsafe.
• The pipeline is so complicated and could be fragile. For instance, the

robot prior could be extremely inaccurate when the view angle for
human video is quite different from that used for robot video
(Especially if you want to get online videos involved).



Thank you!


