End-to-End Video Instance Segmentation with Transformers

Charlie Arleth and Connor Vines

Problem Overview

Video Instance Segmentation (VIS)

- Normal Object Segmentation only considers a single frame
- VIS Requires simultaneous classification, segmentation, and tracking

- They compare the problem to Similarity Learning
 - Instance Segmentation ~ learn pixel-level similarity
 - Instance Tracking ~ learn instance-level similarity

Motivation

- Vast applications
- Complexity
- Bring Transformers into the field of VIS
- Solve the VIS problem in a single framework
- "The framework needs to be simple and achieve strong performance without whistles and bells"

Prior Works

- Top Down tracking-by-detection
- Bottom Up separate instances with clustering

- MaskTrack R-CNN
- Maskprop

MaskTrack R-CNN

VisTR - Video Instance Segmentation TRansformer

Overview

- Input: Sequence of frames
- Output: Sequence of masks for each instance in the video (in order directly)
- Main Components:
 - CNN Backbone, Transformer Encoder/Decoder, Instance Sequence Matching and Segmentation
- The Hungarian Loss is used to train the whole framework

Backbone and Transformer

- Backbone extracts pixel-level feature sequence of input video clip
- Temporal and Spatial Positional Encoding
- Transformer models the similarity of pixel and instance-level features

$$PE(pos, i) = \begin{cases} \sin(pos \cdot \omega_k), & \text{for } i = 2k, \\ \cos(pos \cdot \omega_k), & \text{for } i = 2k+1; \end{cases}$$
$$\omega_k = 1/10000^{2k/\frac{d}{3}}$$

Challenges

- Overlapping instances
- Changes of relative positions between instance
- Instances in various poses

Two main goals:

- Maintaining output order
 - How to consistently track and segment the same image between frames
 - $\circ \qquad \text{Addressed with the instance sequence matching strategy}$
- Obtaining mask sequence for each instance out of the Transformer network
 - $\circ \qquad \text{Addressed with instance sequence segmentation}$

Instance Sequence Matching

Tries to maintain the relative positions of objects in video

Instance Sequence Matching:

- Creates a set of n instances, if less than n instances the set is padded with null
- Finds a mapping between predictions and ground truth
- Computes the lowest matching cost between sets (arg min)
- Hungarian loss is the log likelihood + bounding box loss + mask loss

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in S_{n}} \sum_{i}^{n} \mathcal{L}_{ ext{match}}\left(y_{i}, \hat{y}_{\sigma(i)}
ight)$$

$$\mathcal{L}_{\text{Hung}}(y,\hat{y}) = \sum_{i=1}^{N} \Big[(-\log \hat{p}_{\hat{\sigma}(i)}(c_i)) + \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \\ + \mathcal{L}_{\text{mask}}(m_i, \hat{m}_{\hat{\sigma}}(i)) \Big].$$
(7)

c_i is ground truth class, b_i is predicted box sequence, m_i is mask features

$$egin{aligned} \mathcal{L}_{ ext{box}}ig(b_i, \hat{b}_{\sigma(i)}ig) &= rac{1}{T}\sum_{t=1}^T \Bigl[\lambda_{ ext{iou}}\cdot\mathcal{L}_{ ext{iou}}ig(b_{i,t}, \hat{b}_{\sigma(i),t}ig) \ &+ \lambda_{ ext{L1}}\left\|b_{i,t} - \hat{b}_{\sigma(i),t}
ight\|_1
ight]. \end{aligned}$$

Instance Sequence Segmentation

Used to predict the mask sequence for each individual instance

Instance Sequence Segmentation:

- Masks are obtained through the similarity map between objects (O) and encoded features (E)
- Attention output is fused with backbone through DETR
- Mask features are put through a 3D convolutional network
- Tensor G_i holds features of instance i across all frames
- Mask loss is computed through *Dice* loss and *Focal* loss (Cross-Entropy)

$$\mathcal{L}_{\text{mask}}\left(m_{i}, \hat{m}_{\sigma(i)}\right) = \lambda_{\text{mask}} \frac{1}{T} \sum_{t=1}^{T} \left[\mathcal{L}_{\text{Dicc}}(m_{i,t}, \hat{m}_{\sigma(i),t}) + \mathcal{L}_{\text{Focal}}(m_{i,t}, \hat{m}_{\sigma(i),t}) \right].$$
(9)

Experiments

Implementation Details

- 8 V100 GPUs frame sizes downsampled to fit in GPU mem
- 8 Attention heads, 6 encoder and decoder layers
- Assumes a default video length of 36 frames because that's the longest in the YT database
- Model can track 10 objects per frame
- Trained for 18 epochs

Ablations

Length	AP	AP ₅₀	AP75	AR_1	AR10
18	29.7	50.4	31.1	29.5	34.4
24	30.5	47.8	33.0	29.5	34.4
30	31.7	53.2	32.8	31.3	36.0
36	33.3	53.4	35.1	33.1	38.5

(a) Video sequence length. The performance improves as the sequence length increases.

time order	AP	AP ₅₀	AP75	AR1	AR10
random	32.3	52.1	34.3	33.8	37.3
in order	33.3	53.4	35.1	33.1	38.5

(c) Video sequence order. Sequence in time order is 1.0% better in AP than sequence in random order.

	AP	AP ₅₀	AP75	AR_1	AR10
CNN	32.0	54.5	31.5	31.6	37.7
Transformer	33.3	53.4	35.1	33.1	38.5

(e) CNN-encoded feature vs. Transformer-encoded feature for mask prediction. The transformer improves the feature quality.

	#	AP	AP_{50}	AP75	AR_1	AR_{10}
video level	1	8.4	13.2	9.5	20.0	20.8
frame level	36	13.7	23.3	14.5	30.4	35.1
ins. level	10	32.0	52.8	34.0	31.6	37.2
pred. level	360	33.3	53.4	35.1	33.1	38.5

(b) Instance query embedding. Instance-level query is only 1.3% lower in AP than the prediction-level query with $36\times$ fewer embeddings.

	AP	AP ₅₀	AP75	AR ₁	AR ₁₀
w/o	28.4	50.1	29.5	29.6	33.3
w	33.3	53.4	35.1	33.1	38.5

(d) Position encoding. Position encoding brings about 5% AP gains to VisTR.

	AP	AP ₅₀	AP75	AR1	AR10
w/o	33.3	53.4	35.1	33.1	38.5
w	34.4	55.7	36.5	33.5	38.9

(f) Instance sequence segmentation module. The module with 3D convolutions brings 1.1% AP gains.

Main results

- 40.1% is mask mAP at speed of 57.7 FPS on YouTube-VIS
 - Best/Fastest among all single-model methods
- Achieves fastest speeds even with being slowed by loading image in serial
 - Image loading can be parallelized to achieve a speed more similar to FPS w/o image loading
- MaskProp barely beats it due to combining multiple models
- Simplest version of this model, can be improved

Method	backbone	FPS	AP	AP ₅₀	AP75	AR1	AR10
DeepSORT [28]	ResNet-50		26.1	42.9	26.1	27.8	31.3
FEELVOS [24]	ResNet-50		26.9	42.0	29.7	29.9	33.4
OSMN [31]	ResNet-50	-	27.5	45.1	29.1	28.6	33.1
MaskTrack R-CNN [30]	ResNet-50	20.0	30.3	51.1	32.6	31.0	35.5
STEm-Seg [1]	ResNet-50	-	30.6	50.7	33.5	31.6	37.1
STEm-Seg [1]	ResNet-101	2.1	34.6	55.8	37.9	34.4	41.6
MaskProp [2]	ResNet-50	-	40.0	-	42.9	-	-
MaskProp [2]	ResNet-101	-	42.5	-	45.6		-
VisTR	ResNet-50	30.0/69.9	36.2	59.8	36.9	37.2	42.4
VisTR	ResNet-101	27.7/57.7	40.1	64.0	45.0	38.3	44.9

Visualization (Validation set)

Summary

- Introduces Transformers into a field dominated by Convolutional Methods
- Reshapes VIS task as direct end-to-end parallel sequence decoding/prediction
- SOTA AP and FPS for single model VIS
- Performs well in challenging situations