GeoSim: Realistic Video Simulation via
Geometry-Aware Composition for Self-Driving

Yun Chen'* Frieda Rong!** Shivam Duggal'* Shenlong Wang!?  Xinchen Yan!
Sivabalan Manivasagam'?  Shangjie Xue’*  Ersin Yumer! Raquel Urtasun'?
1Uber Advanced Technologies Group  2University of Toronto
3 Stanford University ~*Massachusetts Institute of Techonology

Presented by Annie Wang & Jun Myeong Choi



Introduction

Self-Driving Car

e Safety(Stability) testing is crucial stage
e Costly and risky to test them in the real world

Video Simulation

e Easy to validate self-driving systems




Existing Methods

Graphics Approach Image Editing Approach

3D Assets Simulated Image Semantic Input Simulated Image

Pros: 3D-aware. High-level Control Pros: Low-cost. Large-Scale. Diverse

Cons: Costly. Realism gap Cons: 2D-aware. Uncontrollable. Artifacts



Key ldeas

Graphics Approach + Image Editing Approach

e Reconstruct a large bank of 3D assets
e Leverage the 3D asset bank to geometrically simulate new objects

into existing videos

Input Video Output Simulated Video

Realistic Traffic-aware Geometrically Consistent

Add New Car



Overview of methods

2 main parts:

e 3D reconstruction of assets

o Leverage data captured by self-driving vehicles to reconstruct the objects around us
o Self-supervised learning method
e Geometry-aware image simulation

o places novel objects into an existing 3D scene and generates a high-quality video sequence of

the composition



Multi-sensor 3D asset reconstruction

Losses (predicted, GT)
Mean Shape

. alall— |
4 ||m o= =1

Pooled

K? Max

I l
\l

SgE ]

TS -

< IR

|

: ji;:.d

=@

o]

Deformations

AP

Arien

Predicted Shape re—
‘—'Chamfer(-" .

" PointNet

Figure 2: Realistic 3D assets creation. Left: multi-view multi-sensor reconstruction network; Right: 3D asset samples. For
each sample we show one of the source images and the 3D mesh.



3D reconstruction network architecture
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Figure 8: 3D reconstruction network architecture. Left: Image feature extraction backbone; Right: Multi-view image
fusion block.



How does it learn?

e No shape supervision
o Solution - train end-to-end with self-supervision

e Guided by how the 3D shape agrees with the camera and LiDAR
observations

b = » {lt(M5;Pi, L) + ligar(Mi; X3) + Lo (M)}



Silhouette loss
la(Mi; Py, L) = ) [[Si; — 7(Myj, Pij) |3
J

S; j € RHEXW is 2D silhouette
o 7—(]_\/_[’ P) is a differentiable neural rendering operator that renders a

differentiable mask on the camera image given a projection matrix P



LIDAR loss

Elidar(Miy Xi) — Z min HX — VH%

e represents the consistency between the accumulated LiDAR point cloud and
the mesh vertices
o Xz is aggregated set of LIDAR points for i-th object



Multi-sensor 3D asset reconstruction
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Figure 2: Realistic 3D assets creation. Left: multi-view multi-sensor reconstruction network; Right: 3D asset samples. For
each sample we show one of the source images and the 3D mesh.



Geometry-aware image simulation

Overview:

e Places novel objects into an existing 3D scene
e Input: camera video footage, LIDAR point clouds, and an HD map in the form
of a lane graph

e CQOutput: video with novel objects inserted into the scene



Summary of simulation steps

e Generate scenario
e Use novel-view rendering with 3D occlusion reasoning to create new image
e Use neural network to fill in the boundary of the inserted objects, create any

missing texture and handle inconsistent lighting.



Generating the scenario

What do we want to add? Where?

Summary of approach:

Infer the location of all objects in the scene by performing 3D object detection
and tracking

For each new object to be inserted, select where to place it as well as which

asset to use based on the HD map and the existing detected traffic

Use an intelligent traffic model for newly placed object such that its motion is
realistic, takes into account the interactions with other actors and avoids

collision



Selecting where to place the object

3D sampling procedure

e exploit HD maps that contain the location of the lanes in bird’s eye view (BEV), and
parameterize the object placement as a tuple (x, y, 8) defining the object center and
orientation in BEV

e randomly sample a placement (x, y) from the lane regions lying within the camera’s
field of view and retrieve the orientation from the lane

e reject all samples that result in collision with other actors or background objects



New Placement Aew Mesh Executed Motih
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Figure 3: 3D-aware object placement, segment retrieval, and temporal simulation.



Which object to place there?

e Use objects from the asset bank that were viewed with similar viewpoints and
distance to the camera in the original footage

e Objects are sampled according to a categorical distribution weighted by their
inverse score

e Perform collision checking again with specific sampled shape to make sure it

is valid



Rendering the object into the scene

Summary of approach:

1. Novel view warping
2. Add shadows
3. Occlusion reasoning

4. Post-composition synthesis



1. Novel view warping

Inverse warping operation

.........................................................................................

Source image Destination image



1. Novel view warping

I = L(n(n (D, Py),Ps)) , where D; =9y (M,P,)

M s the object’s 3D mesh

Is is the source object’'s camera image
PS/Pt are the source/target camera matrices

w is a differentiable neural renderer

Dt* is the target depth map




Distant
Scene

2. Generate shadows

light—based
(no reflectance

Render shadows with graphics engine

e Construct virtual scene with inserted object
e Blend image intensities of scene with and without object
e Cloudy lighting used with good results

Synthetic
Objects

known
reflectance

estimated
reflectance

w/o Shadow Virtual Scene Shadow Weight

L —

Ground Plane

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: Schematics of shadow generation. (left to right): result without shadow, schematics of virtual scene, shadow
weight (ratio of intensity between rendered image with inserted object and without inserted object), result with shadow



3. Occlusion reasoning

Simple approach: compare depth maps

Compute target image’s dense depth map through depth completion network

e Input: RGB image and sparse depth map
e Output: dense depth map

Compute occlusion mask through per-pixel comparison

Background Scene + Object Dense Depth Proposal Canvas



4. Post-composition synthesis

Use image synthesis network to blend the source segment to target scene

e Input: background image, rendered target object, and object binary mask
e OQutput: final blended image that looks realistic

Final Result



Data preprocessing for synthesis network training

Network inputs:

e oObject segment

e target scene with 512x512 region around object center cropped
e mask region

Figure 10: Input data preparation for training the synthesis network. From left to right: scene image I, object segment .S

and mask M and three random data augmentation including color-jitter, segment boundaries erosion-expansion and random
mask in the boundary.



Synthesis network objective

e Inpainting network architecture

e Loss functions:
o Perceptual loss

Lg™ =Y lIFo(D) = Fo(GU - (1= M*), M4, 5Y))];
o GAN loss

LE" = —E.p.(»|D(G(I - (1— M*), M4, 54))]



Evaluation

Dataset

For each pair of images, please select the r ealistic of the two: either TOP or BOTTOM as label. Please zoom to
inspect the mag CI k th th m g th tpl eft blue arrow button to resize to fit window. Click "next task" to

m
Show Instructions RGN move n. Keyboard shortcuts 1,2 for TOP, BOTTOM, respectively.
e UrbanData 2=
. e
. I

ooooo

e Argoverse

Metrics

e Human study (user study)

e Perceptual quality score (FID)

FID = d* = ||jp1 — 153)|%2 — Tr(Z1 + =2 — 221 55)



Comparison of image simulation approach

SPADE




Comparison of image simulation approach

SPADE Cut-Paste GeoSim
Was, 7 A s Dl & ot SO e 4’?« 2 e ) '

Method Human Score (%)
SPADE [58] 99.3
Guided Editing [29] 94.3
Cut-Paste [20] 98.5
CAD [2] 94.3
GeoSim -




Comparison of image simulation approach (Argoverse)
CAD - ] GeoSim

Method Human Score (%) FID
CAD 84.0 28.3
GeoSim - 24.5




Ablation on Rendering options

Approach Shadow Human Score (%) FID

Physics Yes 94.2 17.3
2D Synthesis - 79:1 13.7
Geo Synthesis No 71.9 13.7
Geo Synthesis Yes - 14.3

FID : With Shadow > without Shadow

-> a gap between perceptual measurements and humans’ criteria.



Performance boost using data augmentation

Background Augmented  Augmented Label

¢

Method PSPNet [83] DeepLabv3 [10]
mIOU carlOU mIOU carlOU
Real 93.5 87.8 94.0 88.7

Real+GeoSim  95.3 91.2 94.2 89.2




Failure cases

- Incorrect occlusion relationships - lrregular reconstructed mesh
- Inaccurate object pose - lllumination failure

Occlusion Car Pose

(e




Thank you



