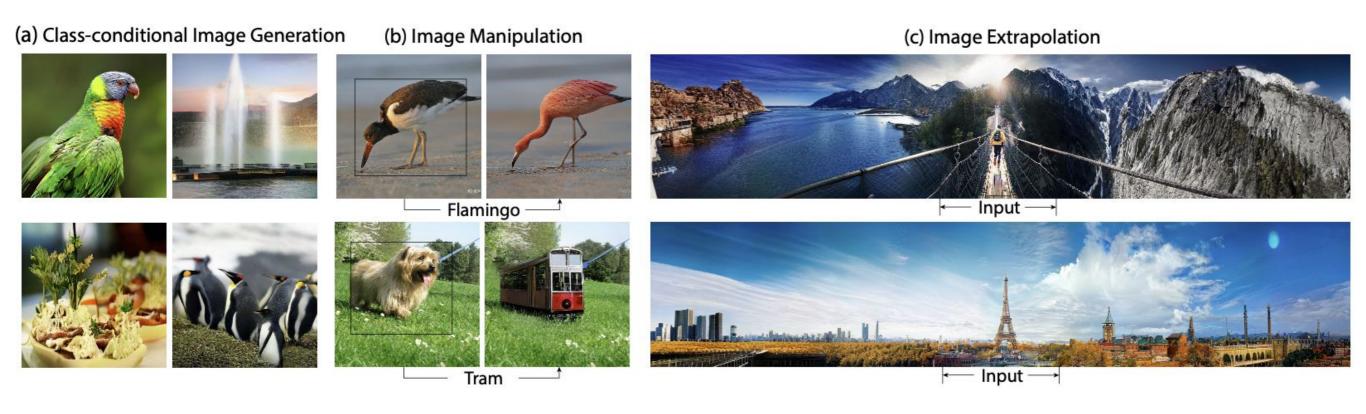
MaskGIT: Masked Generative Image Transformer

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, William T. Freeman Google

Presenters: Andrea Dunn Beltran, Rodrigo Meza

Image Synthesis and Manipulation Tasks

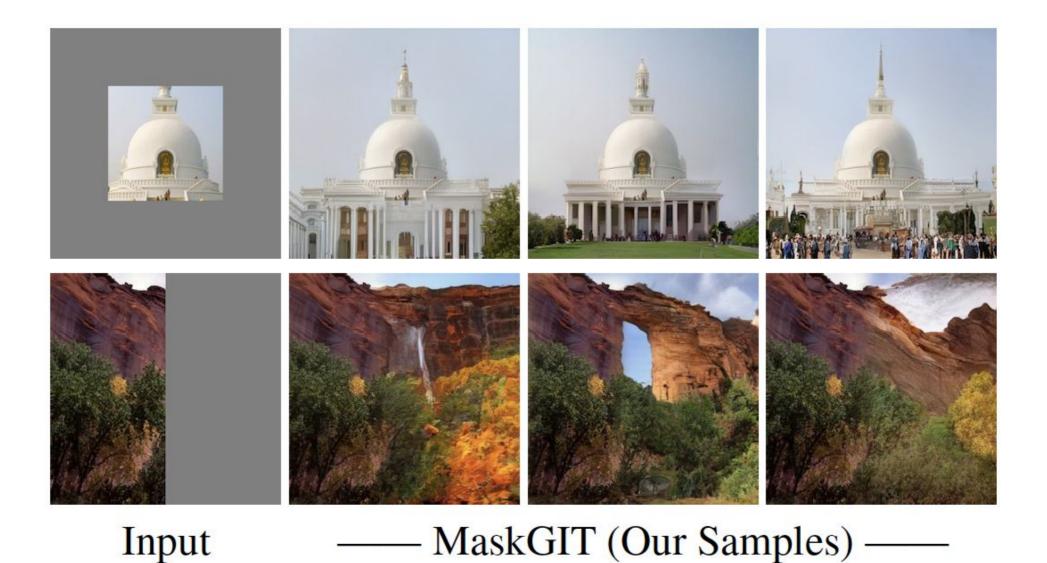


Impainting

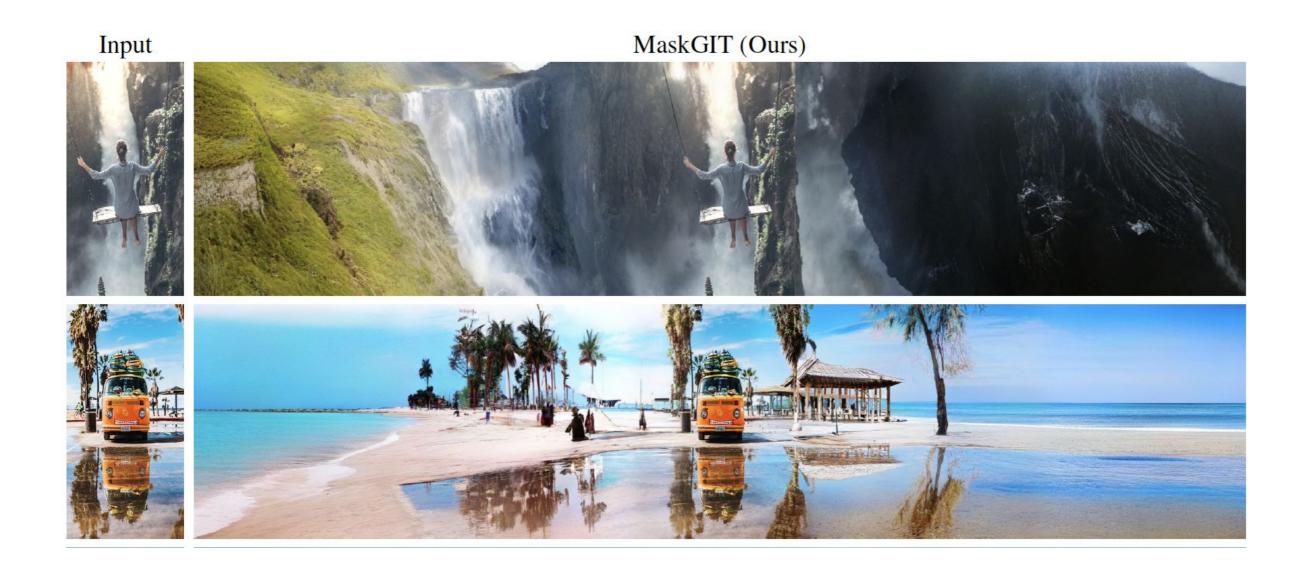
Input

https://masked-generative-image-transformer.github.io/

Outpainting



Horizontal Image Extrapolation



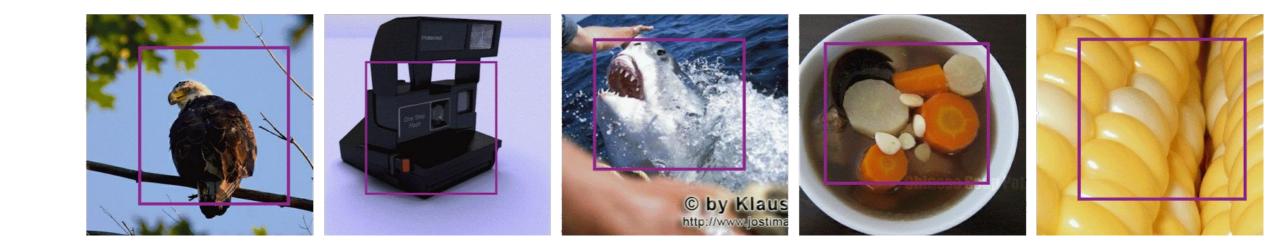
Class-conditional Image editing

Make everything a **cat** !

MaskGIT's output

Class-conditional Image Editing by MaskGIT

Class-conditional Image editing



Input Image

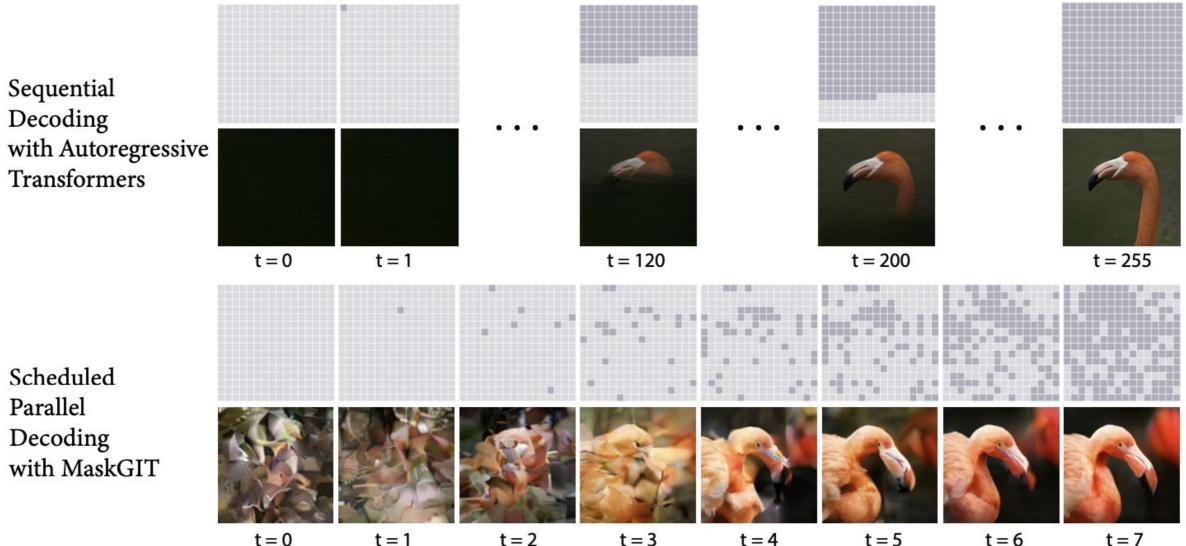
Image Synthesis with Transformers Two Stage Image Generation

- Stage 1: Tokenization, image quantization to sequence of discrete tokens
- Stage 2: Autoregressive model is learned to generate image tokens sequentially

• Issues with raster scan: Images are NOT sequential

Scheduled Parallel Decoding

Comparison against Sequential Decoding



t = 0 t = 1t = 2 t = 3 t = 4t = 5 t=6

Related Work

- Generative Adversarial Networks (GANs)
- Variational Auto-encoders (VAEs)

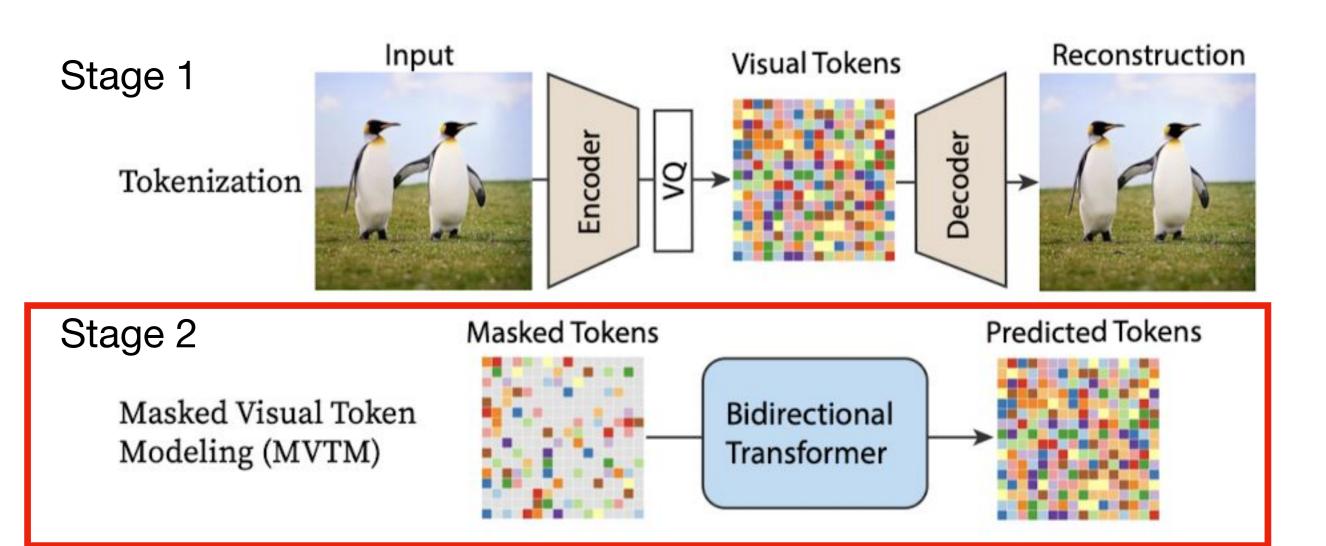
- Transformer Based Image Synthesis
 - VQVAE introduces vector quantization to the VAE method using a 2 stage approach
 - VQGAN improves on VQVAE and combines vector quantization with adversarial and perceptual loss

Masked Modeling with Bi-directional Transformers

Related Work

- Masked Language Modeling (MLM)
 - Introduced by BERT
 - Allows the masked tokens to be predicted using context from both directions
- Difficult to perform autoregressive decoding using bi-directional attentions

Pipeline Overview

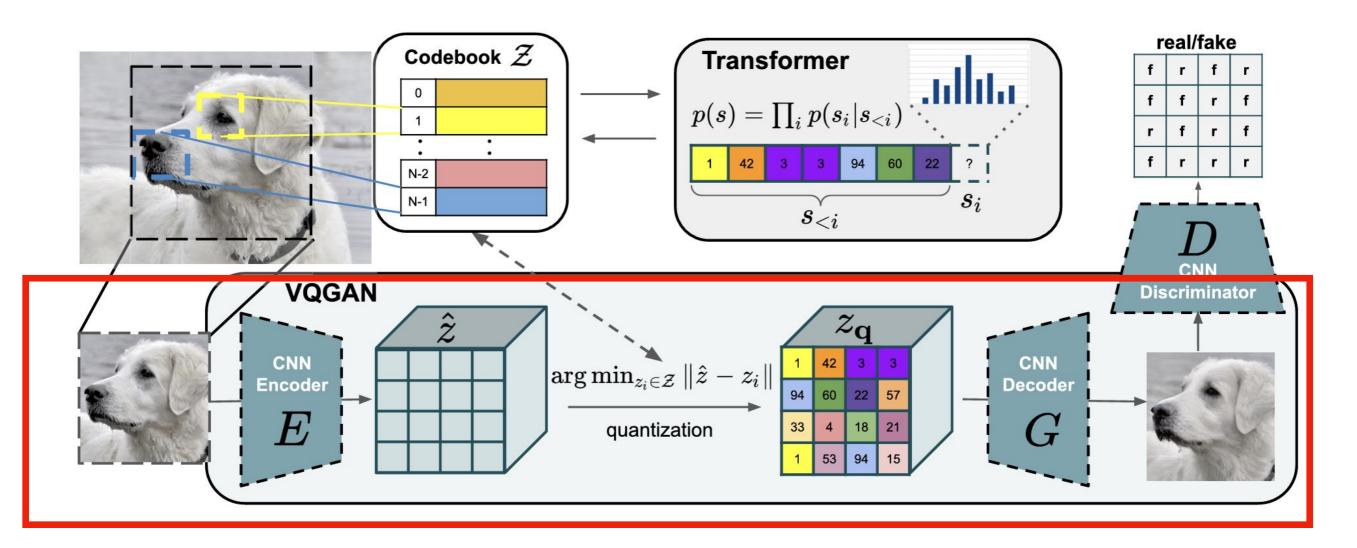


Tokenization

Tokenization

Method: Stage 1

- The paper uses the tokenization method introduced in the VQGAN method.
- This allows them to solely focus on improving Stage 2.



MVTM in Training

Masked Visual Token Modeling (MVTM)

Method: Stage 2

- $\mathbf{Y} = [y_i]_{i=1}^N$: latent tokens obtained by inputting the image to the VQ-encoder
- N: length of the reshaped token matrix
- $\mathbf{M} = [m_i]_{i=1}^N$: corresponding binary mask.
- y_i is replaced with a special [MASK] token if $m_i = 1$, otherwise left intact.

MVTM in Training

Masked Tokens Masked Visual Token Modeling (MVTM) Modeling (MVTM)

Method: Stage 2

- $\gamma(r) \in (0, 1]$: Mask scheduling function
 - 1. Sample a ratio from 0 to 1
 - 2. Uniformly select $[\gamma(r) \cdot N]$ tokens in **Y** to place masks.
- $Y_{\overline{\mathbf{M}}}$: the result after applying mask \mathbf{M} to \mathbf{Y} .
- Objective is to minimize the negative log likelihood of the masked tokens:

$$\mathcal{L}_{\text{mask}} = - \mathop{\mathbb{E}}_{\mathbf{Y} \in \mathcal{D}} \left[\sum_{\forall i \in [1,N], m_i = 1} \log p(y_i | Y_{\overline{\mathbf{M}}}) \right]$$

MVTM in Training

Masked Visual Token Modeling (MVTM) Masked Tokens Predicted Tokens Bidirectional Transformer

Method: Stage 2

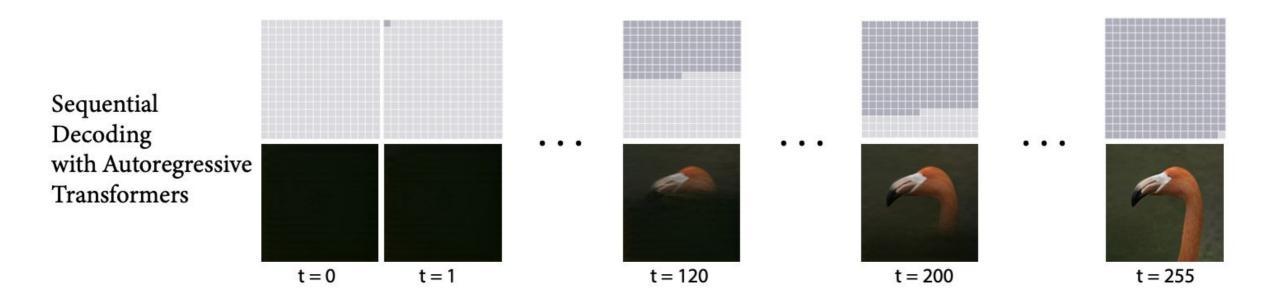
$$\mathcal{L}_{\text{mask}} = - \mathop{\mathbb{E}}_{\mathbf{Y} \in \mathcal{D}} \Big[\sum_{\forall i \in [1,N], m_i = 1} \log p(y_i | Y_{\overline{\mathbf{M}}}) \Big]$$

- We feed the masked $Y_{\overline{M}}$ into multi-layer bidirectional transformer to predict the probabilities $P(y_i|Y_{\overline{M}})$ for each masked token.
- Negative log-likelihood is computed as the cross-entropy between the ground truth one-hot token and predicted token..

Main difference to autoregressive modeling is the conditional dependency in MVTM has two directions, which allows it to get richer tokens by attending all tokens in the image.

Autoregressive Decoding

- Tokens are generated sequentially based on previous output.
- Not parallelizable and very slow for images due to image token length.



Method

- Novel method where all image tokens are created simultaneously in parallel.
 - Feasible due to the bi-directional self-attention of MTVM.

For iteration *t*, we do:

- 1. **Predict:** Given the tokens $Y_{\mathbf{M}}^{(t)}$, we predict the probabilities, $p^{(t)} \in \mathbb{R}^{N \times K}$, for all masked locations in parallel.
- Sample: At each masked location *i*, we sample the tokens and predict the probability to use as a confidence score. Leave unmasked tokens with a confidence score of 1.0

3. Mask Schedule

4. **Mask**

Method

- 1. Predict
- 2. Sample
- 3. **Mask Schedule:** Compute the number of tokens to mask according to the mask scheduling function γ by $n = \lceil \gamma(\frac{t}{T})N \rceil$, where *N* is the input length and *T* the total number of iterations.

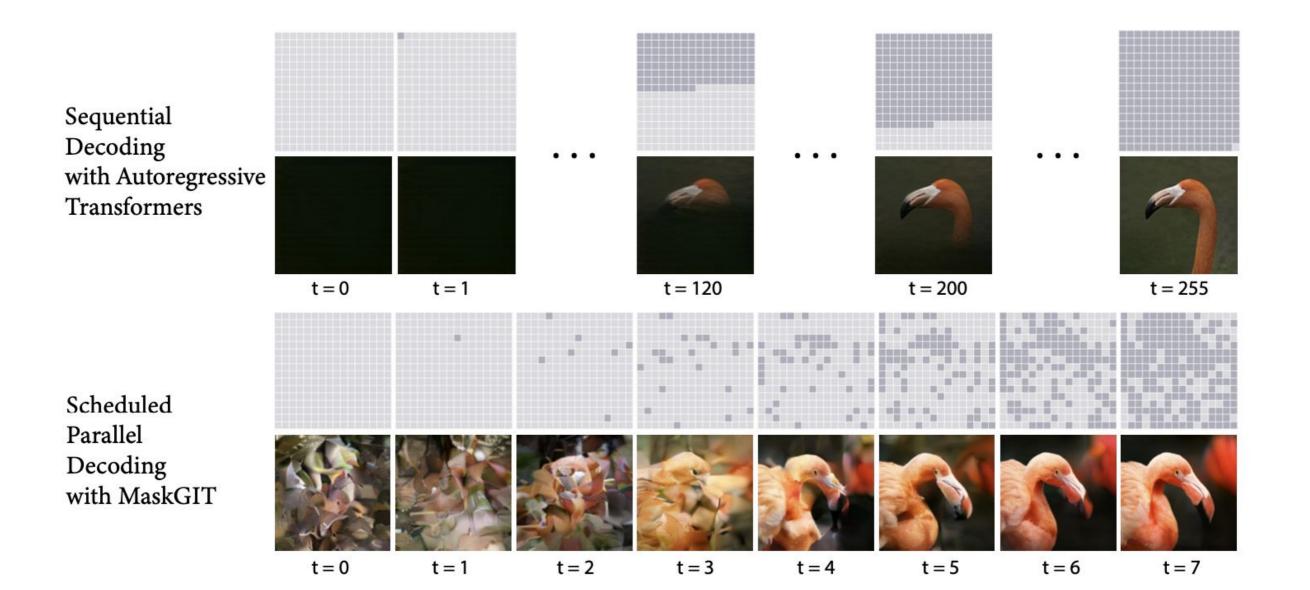
4. **Mask:** We obtain $Y_{\mathbf{M}}^{(t+1)}$ by masking *n* tokens in $Y_{\mathbf{M}}^{(t)}$. The mask for iteration (*t*+1) is:

$$m_i^{(t+1)} = \begin{cases} 1, & \text{if } c_i < \text{sorted}_j(c_j)[n].\\ 0, & \text{otherwise.} \end{cases}$$

where C_i is the confidence score for the *i*-th token.

- The decoding algorithm synthesizes an image in T steps.
- At each iteration, it predicts all tokens simultaneously, keeping only the most confident ones.
- Remaining tokens are masked out and re-predicted in the next iteration.
- Mask ratio decreases until all tokens are generated within T iterations.

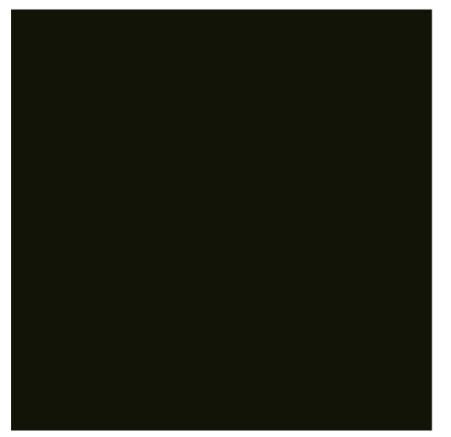
- The decoding algorithm synthesizes an image in T steps.
- At each iteration, it predicts all tokens simultaneously, keeping only the most confident ones.
- Remaining tokens are masked out and re-predicted in the next iteration.
- Mask ratio decreases until all tokens are generated within T iterations.



Scheduled Parallel Decoding

Comparison against Sequential Decoding

Autoregressive Decoding



MaskGIT's Parallel Decoding

Method

- $\gamma(\cdot)$ mask scheduling function that computes the mask ratio for the latent tokens

- Used both in training and inference
 - During inference time, it takes $0/T, 1/T, \cdots, (T-1)/T$ as input and indicates the process in decoding.
 - In training, we sample a ratio r in [0, 1) to simulate various decoding scenarios.

- We need to find a γ that:
 - 1. $\gamma(r)$ needs to be a continuous function bounded by 0 and 1 for $r \in [0, 1]$.
 - 2. $\gamma(r)$ should be (monotonically) decreasing with respect to r, and $\gamma(0) \rightarrow 1$ and $\gamma(1) \rightarrow 0$ must hold true.
 - Ensures convergence

- We try 3 different functions for γ :
 - Linear: straightforward solution, same amount of tokens each time.
 - **Concave:** less-to-more process
 - Start with most masked tokens, then decrease.
 - Only need to make a few correct predictions to feel confident.
 - Mask ratio drops sharply towards the end, making model have to make a lot more correct predictions.
 - i.e. cosine, square, cubic, and exponential

- We try 3 different functions for γ :
 - Linear
 - Concave
 - **Convex:** more-to-less process.
 - Model needs to finalize the vast majority of tokens within the first couple of interactions.
 - i.e. square root and logarithmic.

Experimental Setup

Experiments

• For each Dataset:

- single autoencoder, decoder, and codebook with 1024 tokens on cropped 256x256
- Autoencoder and codebook can be reused to synthesize 512x512 images

• Transformer Model:

- 24 layers, 8 attention heads, 768 embedding dimensions and 3072 hidden dimensions
- positional embedding, LayerNorm, and truncated normal initialization

• Data Augmentation: RandomResizeAndCrop

- Training:
 - 4x4 TPU devices
 - ImageNet models: 300 epochs. Places2: 200 epochs

Diversity

BigGAN-deep (FID=6.95)

MaskGIT (FID=6.18)

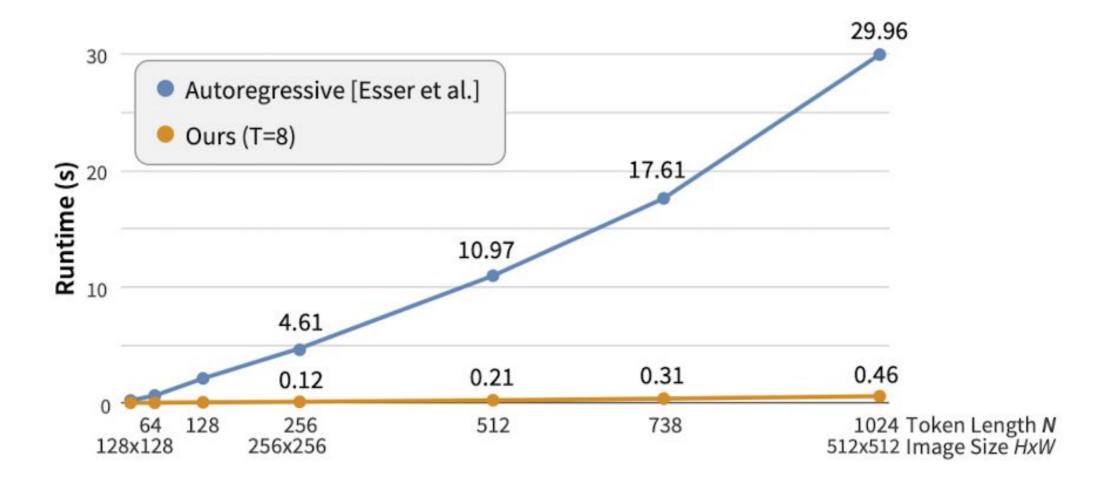
Training Set

Quality

Model	FID↓	IS ↑	Prec ↑	Rec ↑	# params	# steps	$CAS \times 100 \uparrow$	
ImageNet 256×256							Top-1 (76.6)	Top-5 (93.1)
DCTransformer [32]	36.51	n/a	0.36	0.67	738M	>1024		
BigGAN-deep [4]	6.95	198.2	0.87	0.28	160M	1	43.99	67.89
Improved DDPM [33] ⁻	12.26	n/a	0.70	0.62	280M	250		
ADM [12] [□]	10.94	101.0	0.69	0.63	554M	250		
VQVAE-2 [37] ^D	31.11	~45	0.36	0.57	$13.5B^{\dagger}$	5120	54.83	77.59
VQGAN [15] ^D	15.78	78.3	n/a	n/a	1.4B	256		
VQGAN*	18.65	80.4	0.78	0.26	227M	256	53.10	76.18
MaskGIT (Ours)	6.18	182.1	0.80	0.51	227M	8	63.14	84.45
ImageNet 512×512								
BigGAN-deep [4]	8.43	232.5	0.88	0.29	160M	1	44.02	68.22
ADM [12] ⁻	23.24	58.06	0.73	0.60	559M	250		
VQGAN*	26.52	66.8	0.73	0.31	227M	1024	51.29	74.24
MaskGIT (Ours)	7.32	156.0	0.78	0.50	227M	12	63.43	84.79

Speed

Model	$FID \downarrow$	IS ↑	Prec ↑	Rec ↑	# params	# steps	CAS >	<100↑
ImageNet 256×256							Top-1 (76.6)	Top-5 (93.1)
DCTransformer [32]	36.51	n/a	0.36	0.67	738M	>1024		
BigGAN-deep [4]	6.95	198.2	0.87	0.28	160M	1	43.99	67.89
Improved DDPM [33] ^D	12.26	n/a	0.70	0.62	280M	250		
ADM [12] [–]	10.94	101.0	0.69	0.63	554M	250		
VQVAE-2 [37] ^D	31.11	~45	0.36	0.57	$13.5B^{\dagger}$	5120	54.83	77.59
VQGAN [15] ^D	15.78	78.3	n/a	n/a	1.4B	256		
VQGAN*	18.65	80.4	0.78	0.26	227M	256	53.10	76.18
MaskGIT (Ours)	6.18	182.1	0.80	0.51	227M	8	63.14	84.45
ImageNet 512×512								
BigGAN-deep [4]	8.43	232.5	0.88	0.29	160M	1	44.02	68.22
ADM [12] ⁻	23.24	58.06	0.73	0.60	559M	250		
VQGAN*	26.52	66.8	0.73	0.31	227M	1024	51.29	74.24
MaskGIT (Ours)	7.32	156.0	0.78	0.50	227M	12	63.43	84.79



Transformer wall-clock runtime comparison

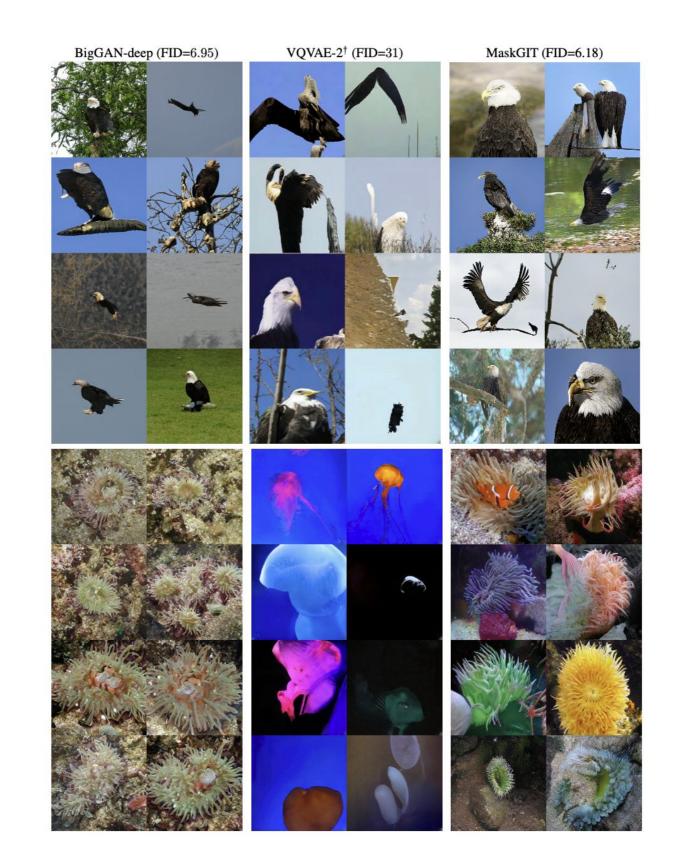
Diversity

Model	$FID\downarrow$	IS ↑	Prec ↑	Rec ↑	# params	# steps	CAS >	<100↑
ImageNet 256×256							Top-1 (76.6)	Top-5 (93.1)
DCTransformer [32]	36.51	n/a	0.36	0.67	738M	>1024		
BigGAN-deep [4]	6.95	198.2	0.87	0.28	160M	1	43.99	67.89
Improved DDPM [33] [¬]	12.26	n/a	0.70	0.62	280M	250		
ADM [12] [¬]	10.94	101.0	0.69	0.63	554M	250		
VQVAE-2 [37] ⁻	31.11	~45	0.36	0.57	$13.5B^{\dagger}$	5120	54.83	77.59
VQGAN [15] ^D	15.78	78.3	n/a	n/a	1.4B	256		
VQGAN*	18.65	80.4	0.78	0.26	227M	256	53.10	76.18
MaskGIT (Ours)	6.18	182.1	0.80	0.51	227M	8	63.14	84.45
ImageNet 512×512								
BigGAN-deep [4]	8.43	232.5	0.88	0.29	160M	1	44.02	68.22
ADM [12] [–]	23.24	58.06	0.73	0.60	559M	250		
VQGAN*	26.52	66.8	0.73	0.31	227M	1024	51.29	74.24
MaskGIT (Ours)	7.32	156.0	0.78	0.50	227M	12	63.43	84.79

Diversity

Model	FID↓	IS ↑	Prec ↑	Rec ↑	# params	# steps	CAS ×100 ↑	
ImageNet 256×256							Top-1 (76.6)	Top-5 (93.1)
DCTransformer [32]	36.51	n/a	0.36	0.67	738M	>1024		
BigGAN-deep [4]	6.95	198.2	0.87	0.28	160M	1	43.99	67.89
Improved DDPM [33] ⁻	12.26	n/a	0.70	0.62	280M	250		
ADM [12] [–]	10.94	101.0	0.69	0.63	554M	250		
VQVAE-2 [37] ⁻	31.11	~45	0.36	0.57	$13.5B^{\dagger}$	5120	54.83	77.59
VQGAN [15] ^D	15.78	78.3	n/a	n/a	1.4B	256		
VQGAN*	18.65	80.4	0.78	0.26	227M	256	53.10	76.18
MaskGIT (Ours)	6.18	182.1	0.80	0.51	227M	8	63.14	84.45
ImageNet 512×512								
BigGAN-deep [4]	8.43	232.5	0.88	0.29	160M	1	44.02	68.22
ADM [12] [□]	23.24	58.06	0.73	0.60	559M	250		
VQGAN*	26.52	66.8	0.73	0.31	227M	1024	51.29	74.24
MaskGIT (Ours)	7.32	156.0	0.78	0.50	227M	12	63.43	84.79

Diversity



Class-conditional Image Editing

Image Editing Applications

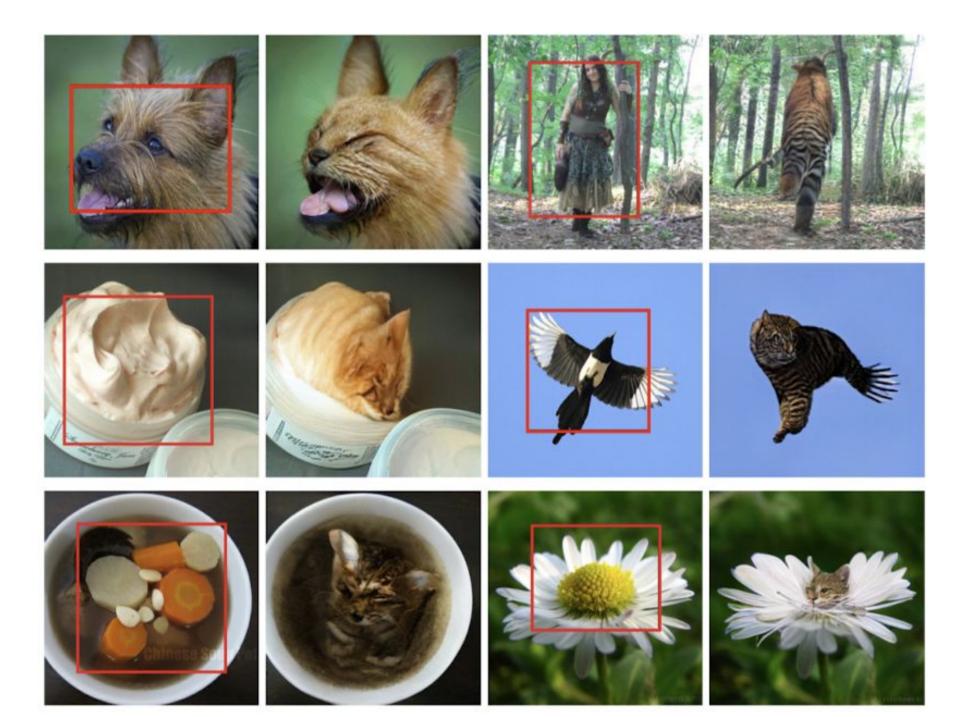
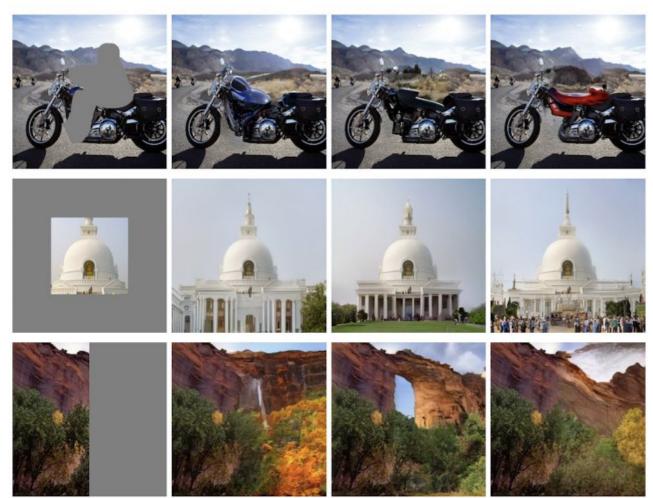


Image Impainting & Outpainting

Image Editing Applications



Input

- MaskGIT (Our Samples) ——

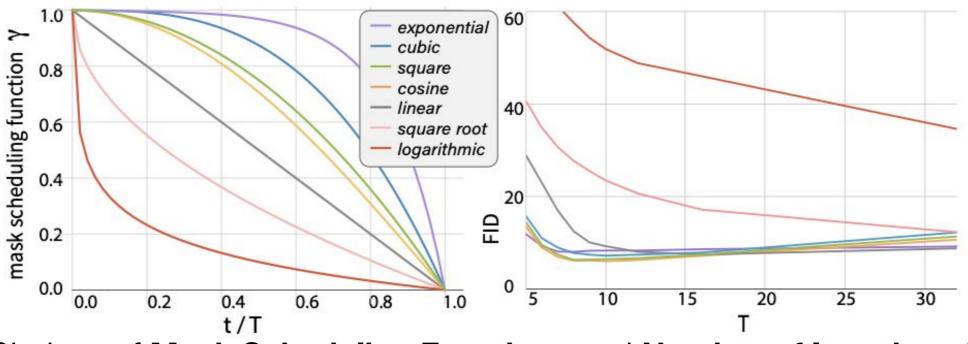
Task	Model	$FID\downarrow$	IS ↑
Outpainting	Boundless [43] ⁻	35.02	6.15
Right 50%	In&Out [8] ⁻	23.57	7.18
	InfinityGAN [31]	10.60	5.57
	Boundless [43] TF *	7.80	5.99
	MaskGIT (Ours) 512	6.78	11.69
Inpainting	DeepFill [52]	11.51	22.55
Center 50% × 50%	ICT [49] [†]	13.63	17.70
	HiFill [50] ⁵¹²	16.60	19.93
	CoModGAN [57] ⁵¹²	7.13	21.82
	MaskGIT (Ours) ⁵¹²	7.92	22.95

Mask Scheduling

Ablation Studies

Ablation Results on the Mask Scheduling Functions

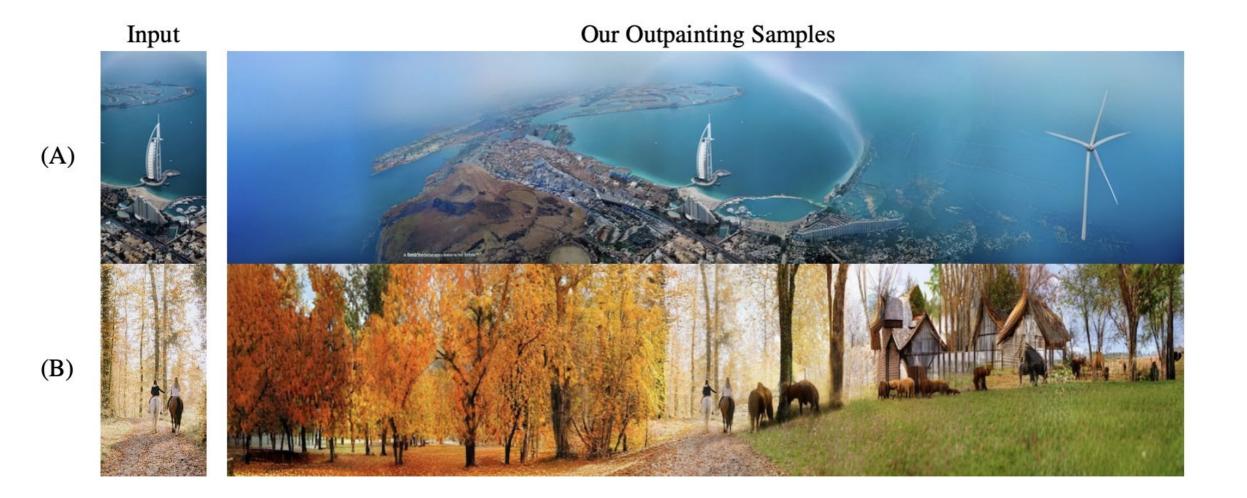
γ	T	$\mathbf{FID}\downarrow$	IS ↑	NLL
Exponential	8	7.89	156.3	4.83
Cubic	9	7.26	165.2	4.63
Square	10	6.35	179.9	4.38
Cosine	10	6.06	181.5	4.22
Linear	16	7.51	113.2	3.75
Square Root	32	12.33	99.0	3.34
Logarithmic	60	29.17	47.9	3.08



Choices of Mask Scheduling Functions and Number of Iterations T

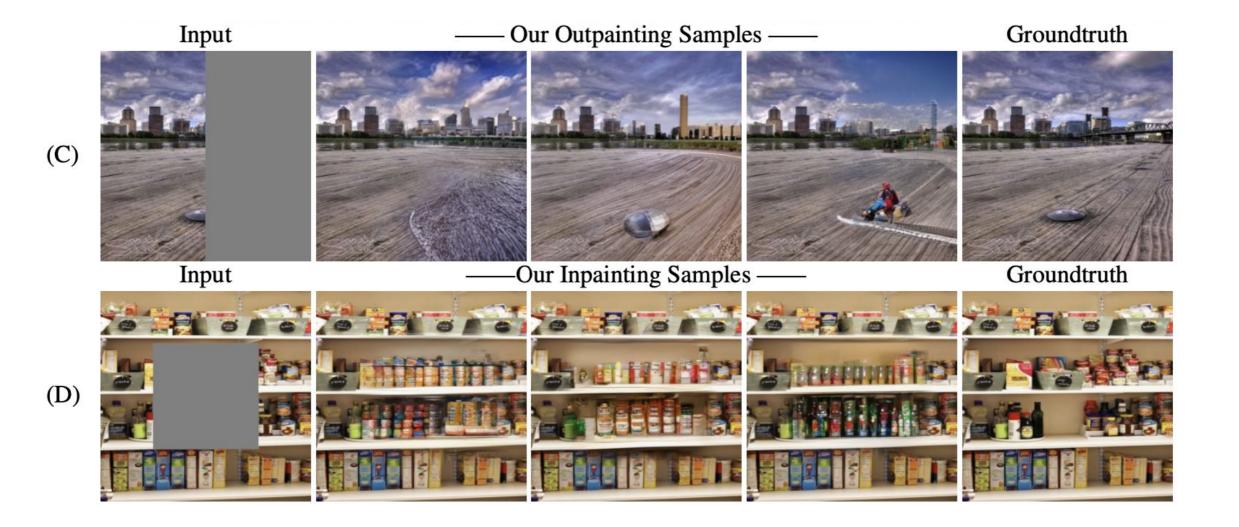
Limitations and Failure Cases

Semantic and Color Shifts



Limitations and Failure Cases

Outpainting and Inpainting



Limitations and Failure Cases

Outpainting and Inpainting

-Our Class-conditional Samples -

(E)

Conclusions

- Trained on Masked Visual Token Modeling but extendable to various image manipulation tasks
- Significantly outperforms the SOTA transformer model on conditional image generation
 - Competitive performance with SOTA GANs
- Limitations: Semantic and color shifts; may ignore or modify objects during outpainting and inpainting; oversmoothing on complex structures