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MaskGIT

Image Synthesis and Manipulation Tasks

(a) Class-conditional Image Generation  (b) Image Manipulation (c) Image Extrapolation




Image Synthesis

Impainting

Input —— MaskGIT (Our Samples) ——

Input MaskGIT’'s Samples

https://masked-generative-image-transformer.github.io/



Image Synthesis
Outpainting

Input —— MaskGIT (Our Samples)




Image Synthesis

Horizontal Image Extrapolation

Ma'skGIT (Ours)




Image Synthesis

Class-conditional Image editing

Make everything a cat !

-

Class-conditional Image Editing by MaskGIT



Image Synthesis

Class-conditional Image editing

Input
Image




Image Synthesis with

Transformers
Two Stage Image Generation

® Stage 1: Tokenization, image quantization to sequence of
discrete tokens

® Stage 2: Autoregressive model is learned to generate image
tokens sequentially

® |ssues with raster scan: Images are NOT sequential



Scheduled Parallel Decoding

Comparison against Sequential Decoding

Sequential
Decoding

with Autoregressive
Transformers

t=120 t=200 t=255

Scheduled
Parallel

Decoding
with MaskGIT




Image Synthesis
Related Work

® Generative Adversarial Networks (GANS)

® Variational Auto-encoders (VAESs)

® Transformer Based Image Synthesis

® VQVAE introduces vector quantization to the VAE method
using a 2 stage approach

® VQGAN improves on VQVAE and combines vector
quantization with adversarial and perceptual loss



Masked Modeling with
Bi-directional Transformers

Related Work

® Masked Language Modeling (MLM)
® Introduced by BERT

® Allows the masked tokens to be predicted using context from
both directions

® Difficult to perform autoregressive decoding using bi-directional
attentions



Pipeline Overview
Method

Input Visual Tokens Reconstruction

Stage 1

N

Tokenization

Stage 2 Predicted Tokens

. Bt o
Masked Visual Token ST Bidirectional . |
Modeling (MVTM) | ", Transformer
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Input Visual Tokens Reconstruction

TO ken izati O n Tokenization | % o _)E:::;:n %
Method: Stage 1 e el

® The paper uses the tokenization method introduced in the
VQGAN method.

® This allows them to solely focus on improving Stage 2.
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Masked Toke ns Predicted To k ns
MVT M I n Tra I n I n g Masked Visual Token l - {Bldlrectional J_J': B | y '||
|'| arl

Modeling (MVTM) Transformer
Method: Stage 2

— [.1N
Y = [yiliz, : latent tokens obtained by inputting the image to the
VQ-encoder

N 1 length of the reshaped token matrix

_ N
M = [mi]iZ . corresponding binary mask.

Yi is replaced with a special [MASK] token if "% = 1 otherwise
left intact.



M sked Token Predicted Tokens
INn Trainin SRS
Masked Visual Token By = L Bidirectional !':_ |_5 o=
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Modeling (MVTM) Transformer _:‘ I|'|_:;:::.!|_
Method: Stage 2

. (1) € (0,1]. Mask scheduling function

1. Sample a ratio from 0 to 1

2. Uniformly select [7(r) - Nltokensin Y to place masks.

. Yﬁ: the result after applying mask M to Y,

 Objective is to minimize the negative log likelihood of the masked
tokens:

Emask e Y]PGJD [ Z lOg p (yz|YM)]
Vie[1,N],m;=1



Transformer

M VT M T Masked Tokens Pred cted Tokens
I n ra I n I n g Masked Visual Token |‘ s ‘ i | II. I I,

Modeling (MVTM) Bidirectional
Method: Stage 2

Liask = — E [ > logp(yz-lYM)]

YeD L vie1,N],mi=1
. We feed the masked M into multi-layer bidirectional transformer
to predict the probabilities P(yiYyr) for each masked token.

* Negative log-likelihood is computed as the cross-entropy
between the ground truth one-hot token and predicted token..

Main difference to autoregressive modeling is the conditional
dependency in MVTM has two directions, which allows it to get
richer tokens by attending all tokens in the image.



Ilterative Decoding

Autoregressive Decoding

® Tokens are generated sequentially based on previous output.

® Not parallelizable and very slow for images due to image token
length.

Sequential
Decoding

with Autoregressive
Transformers

t=120 t=200 t=255



Ilterative Decoding
Method

* Novel method where all image tokens are created simultaneously in parallel.
* Feasible due to the bi-directional self-attention of MTVM.

For iteration t, we do:

(1)
1. Predict: Given the tokens Y™ , we predict the probabilities,p(t) e RV*K ,
for all masked locations in parallel.

2. Sample: At each masked location i, we sample the tokens and predict the
probability to use as a confidence score. Leave unmasked tokens with a
confidence score of 1.0

3. Mask Schedule

4. Mask



Ilterative Decoding
Method

1. Predict

2. Sample

3. Mask Schedule: Compute the number of tokens to mask according to the

ing function ¥ by ® = [Y($)N] s the i
mask scheduling function by 4% , Where N is the input length
and T the total number of iterations.

Y(t+1)

(2)
4. Mask: We obtain "M by masking n tokens in YM'. The mask for iteration

(t+1) is:

m§t+1) _ {1, if ¢; < sorted;(c;)[n]. |
0, otherwise.



Ilterative Decoding
Method

* The decoding algorithm synthesizes an image in T steps.

e At each iteration, it predicts all tokens simultaneously, keeping
only the most confident ones.

e Remaining tokens are masked out and re-predicted in the next
iteration.

e Mask ratio decreases until all tokens are generated within T
iterations.



Ilterative Decoding
Method

* The decoding algorithm synthesizes an image in T steps.

e At each iteration, it predicts all tokens simultaneously, keeping
only the most confident ones.

e Remaining tokens are masked out and re-predicted in the next
iteration.

e Mask ratio decreases until all tokens are generated within T
iterations.



Ilterative Decoding
Method

Sequential
Decoding

with Autoregressive
Transformers
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Decoding
with MaskGIT




Scheduled Parallel Decoding

Comparison against Sequential Decoding

Autoregressive Decoding MaskGIT’s Parallel Decoding




Masking Design

Method

. 7() mask scheduling function that computes the mask ratio for
the latent tokens

» Used both in training and inference

» During inference time, it takes /7% 1/T,--- . (T'=1)/T ag input
and indicates the process in decoding.

e In training, we sample a ratio 7 in 0. 1) to simulate various
decoding scenarios.



Masking Design

Method

« We need to find a | that:

1. 7(") needs to be a continuous function bounded by 0 and 1
for7 € [O 1].

2.7(") should be (monotonically) decreasing with respect to 7,
and 7(0) — T and 7(1) — 0 must hold true.

 Ensures convergence



Masking Design

Method

® \We try 3 different functions for ") :

® Jlt_.inear: straightforward solution, same amount of tokens each
ime.

® Concave: less-to-more process
® Start with most masked tokens, then decrease.

¢ Only need to make a few correct predictions to feel
confident.

® Mask ratio drops sharply towards the end, making model
have to make a lot more correct predictions.

® |.e. cosine, square, cubic, and exponential



Masking Design

Method

® \We try 3 different functions for " :
® Linear
® Concave
® Convex: more-to-less process.

® Model needs to finalize the vast majority of tokens within the
first couple of interactions.

® |.e. square root and logarithmic.



Experimental Setup

Experiments

® For each Dataset:
® single autoencoder, decoder, and codebook with 1024 tokens on cropped 256x256
® Autoencoder and codebook can be reused to synthesize 512x512 images
® Transformer Model:
® 24 |ayers, 8 attention heads, 768 embedding dimensions and 3072 hidden dimensions
® positional embedding, LayerNorm, and truncated normal initialization
 Data Augmentation: RandomResizeAndCrop
® Training:
® 4x4 TPU devices

® ImageNet models: 300 epochs. Places2: 200 epochs



Class-conditional Image Synthesis

Diversity

\ p p
i
CHEESE-BURGER

BigGAN-deep (FID=6.95) Training Set



Class-conditional Image Synthesis
Quality

Model Prect Rec? # params  # steps CAS x100 1
DCTransformer [ '] ° 0.36 0.67 738M >1024

BigGAN-deep ['] 0.87 0.28 160M 1 43.99 67.89
Improved DDPM [ ]° 0.70 0.62 280M 250

ADM [ ]° 0.69 0.63 554M 250

VQVAE-2 [ ]° 0.36 0.57 13.5B1 5120 54.83 77.59
VQGAN [ °]° n/a n/a 1.4B 256

VQGAN* 0.78 0.26 227TM 256 53.10 76.18
MaskGIT (Ours) 0.80 0.51 227M 8 63.14 84.45
ImageNet 512x 512

BigGAN-deep ['] 0.88 0.29 160M 1 44.02 68.22
ADM [ ]° 0.73 0.60 559M 250

VQGAN* 0.73 0.31 227TM 1024 51.29 74.24
MaskGIT (Ours) 0.78 0.50 227TM 12 63.43 84.79




Class-conditional Image Synthesis
Speed

Model FID| ISt Prect Rec? # params CAS x100 1
DCTransformer [ '] ° 36.51 n/a 0.36 0.67 738M

BigGAN-deep ['] 6.95 198.2 0.87 0.28 160M 43.99 67.89
Improved DDPM [ /]° 12.26 n/a 0.70 0.62 280M

ADM [ ]° 1094 101.0 0.69 0.63 554M

VQVAE-2 [ ]° 31.11 ~45 0.36 0.57 13.5B1 54.83 77.59
VQGAN [ °]° 15.78 78.3 n/a n/a 1.4B

VQGAN* 18.65 80.4 0.78 0.26 227TM 53.10 76.18
MaskGIT (Ours) 6.18 182.1 0.80 0.51 227M 63.14 84.45
ImageNet 512x 512

BigGAN-deep ['] 843 2325 0.88 0.29 160M 44.02 68.22
ADM [ ]° 23.24  58.06 0.73 0.60 559M

VQGAN* 26.52  66.8 0.73 0.31 227TM 51.29 74.24
MaskGIT (Ours) 732 156.0 0.78 0.50 227TM 63.43 84.79




Class-conditional Image Synthesis
Speed

29.96
W —

® Autoregressive [Esser et al.]

| ® Ours (T=8)

Runtime (s)
S

-
o

0.12 0.46
64 128 256 512 738 1024 Token Length N
128x128 256x256 512x512 Image Size HxW

Transformer wall-clock runtime comparison



Class-conditional Image Synthesis

Diversity

Model FID| ISt Prect Rec? # params  # steps CAS x100 1
DCTransformer [ '] ° 36.51 n/a 0.36 0.67 738M >1024

BigGAN-deep ['] 695 198.2 0.87 0.28 160M 1 43.99 67.89
Improved DDPM [ /]° 12.26 n/a 0.70 0.62 280M 250

ADM [ ]° 1094 101.0 0.69 0.63 554M 250

VQVAE-2 [ ]° 31.11 ~45 0.36 0.57 13.5B1 5120

VQGAN [ °]° 15.78 78.3 n/a n/a 1.4B 256

VQGAN* 18.65 80.4 0.78 0.26 227TM 256

MaskGIT (Ours) 6.18 182.1 0.80 0.51 227TM 8

ImageNet 512x 512

BigGAN-deep ['] 843 2325 0.88 0.29 160M 1

ADM [ ]° 23.24  58.06 0.73 0.60 559M 250

VQGAN* 26.52  66.8 0.73 0.31 227TM 1024

MaskGIT (Ours) 732 156.0 0.78 0.50 227TM 12




Class-conditional Image Synthesis

Diversity

Model FID| IS? # params  # steps CAS x100 1
DCTransformer [ '] ° 36.51 n/a 738M >1024

BigGAN-deep ['] 6.95 198.2 160M 1 43.99 67.89
Improved DDPM [ /]° 12.26 n/a 280M 250

ADM [ ]° 10.94 101.0 554M 250

VQVAE-2 [ ]° 31.11 ~45 13.5BT 5120 54.83 77.59
VQGAN [ ]° 15.78  78.3 1.4B 256

VQGAN* 18.65 804 227M 256 53.10 76.18
MaskGIT (Ours) 6.18 182.1 227M 8 63.14 84.45
ImageNet 512x 512

BigGAN-deep ['] 843 2325 160M 1 44.02 68.22
ADM [ ]° 23.24  58.06 559M 250

VQGAN* 26.52  66.8 227TM 1024 51.29 74.24
MaskGIT (Ours) 732 156.0 227TM 12 63.43 84.79




Class-conditional Image Synthesis

Diversity

VQVAE-2' (FID=31) MaskGIT (FID=6.18)

~ BigGAN-deep (FID=6.95)




Class-conditional Image Editing
Image Editing Applications




Image Impainting & Outpainting

Image Editing Applications

Task Model FID| IS1?
Outpainting Boundless [/ ]” 35.02 6.15
Right 50% In&Out [~]”° 23.57 7.18
InfinityGAN [ '] 10.60 5.57
Boundless [ ] TF * 7.80 5.99
MaskGIT (Ours) °*? 6.78 11.69
Inpainting DeepFill [~ ] 11.51 :22.55
Center 50%x50% ICT [19]" 13.63 17.70
HiFill [©0]°12 16.60 19.93

CoModGAN [57]°12 7.13 21.82
MaskGIT (Ours)®'? 7.92 2295

Input —— MaskGIT (Our Samples)




Mask Scheduling

Ablation Studies

Y T FID| IS?T NLL

Exponential 8 789 1563 4.83

Ablation Results on the Cubic 9 726 1652 4.63
Mask Scheduling Square 10 635 1799 4.38
Functions Cosine 10 6.06 181.5 4.22

Linear 16 7.51 1132 3.75

Square Root 32 1233 99.0 3.34
Logarithmic 60 29.17 479 3.08
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Choices of Mask Scheduling Functions and Number of lterations T



Limitations and Failure Cases

Semantic and Color Shifts

Our Outpainting Samples




Limitations and Failure Cases
Outpainting and Inpainting

—— Our Outpainting Samples Groundtruth




Limitations and Failure Cases
Outpainting and Inpainting

—Our Class-conditional Samples —
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Summary

Conclusions

® Trained on Masked Visual Token Modeling but extendable to
various image manipulation tasks

® Significantly outperforms the SOTA transformer model on
conditional image generation

® Competitive performance with SOTA GANs

® Limitations: Semantic and color shifts; may ignore or modify
objects during outpainting and inpainting; oversmoothing on
complex structures



