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Image Synthesis and Manipulation Tasks 

MaskGIT



Impainting

Image Synthesis
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Class-conditional Image editing

Image Synthesis



• Stage 1: Tokenization, image quantization to sequence of 
discrete tokens

• Stage 2: Autoregressive model is learned to generate image 
tokens sequentially

• Issues with raster scan: Images are NOT sequential

Two Stage Image Generation

Image Synthesis with 
Transformers



Comparison against Sequential Decoding 

Scheduled Parallel Decoding 



• Generative Adversarial Networks (GANs)

• Variational Auto-encoders (VAEs) 

• Transformer Based Image Synthesis

• VQVAE introduces vector quantization to the VAE method 
using a 2 stage approach

• VQGAN improves on VQVAE and combines vector 
quantization with adversarial and perceptual loss

Related Work

Image Synthesis



• Masked Language Modeling (MLM) 

• Introduced by BERT

• Allows the masked tokens to be predicted using context from 
both directions 

• Difficult to perform autoregressive decoding using bi-directional 
attentions 

Related Work

Masked Modeling with 
Bi-directional Transformers



Method

Pipeline Overview

Stage 1

Stage 2



• The paper uses the tokenization method introduced in the 
VQGAN method.

• This allows them to solely focus on improving Stage 2. 

Method: Stage 1

Tokenization



Method: Stage 2

MVTM in Training
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• Tokens are generated sequentially based on previous output.

• Not parallelizable and very slow for images due to image token 
length.

Autoregressive Decoding

Iterative Decoding
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•The decoding algorithm synthesizes an image in T steps.

•At each iteration, it predicts all tokens simultaneously, keeping 
only the most confident ones.

•Remaining tokens are masked out and re-predicted in the next 
iteration.

•Mask ratio decreases until all tokens are generated within T 
iterations.
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• We try 3 different functions for        :

• Linear: straightforward solution, same amount of tokens each 
time.

• Concave: less-to-more process

• Start with most masked tokens, then decrease.

• Only need to make a few correct predictions to feel 
confident.

• Mask ratio drops sharply towards the end, making model 
have to make a lot more correct predictions.

• i.e. cosine, square, cubic, and exponential
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• We try 3 different functions for     :

• Linear

• Concave

• Convex: more-to-less process. 

• Model needs to finalize the vast majority of tokens within the 
first couple of interactions.

• i.e. square root and logarithmic.

Method

Masking Design



• For each Dataset: 

• single autoencoder, decoder, and codebook with 1024 tokens on cropped 256x256 

• Autoencoder and codebook can be reused to synthesize 512x512 images

• Transformer Model: 

• 24 layers, 8 attention heads, 768 embedding dimensions and 3072 hidden dimensions

• positional embedding, LayerNorm, and truncated normal initialization

• Data Augmentation: RandomResizeAndCrop

• Training:

• 4x4 TPU devices 

• ImageNet models: 300 epochs. Places2: 200 epochs 

Experiments

Experimental Setup 
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Speed
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Transformer wall-clock runtime comparison
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Image Editing Applications

Class-conditional Image Editing



Image Editing Applications

Image Impainting & Outpainting



Ablation Studies 

Mask Scheduling

Ablation Results on the 
Mask Scheduling 

Functions 

Choices of Mask Scheduling Functions and Number of Iterations T 



Semantic and Color Shifts 

Limitations and Failure Cases
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Outpainting and Inpainting
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• Trained on Masked Visual Token Modeling but extendable to 
various image manipulation tasks 

• Significantly outperforms the SOTA transformer model on 
conditional image generation 

• Competitive performance with SOTA GANs 

• Limitations: Semantic and color shifts; may ignore or modify 
objects during outpainting and inpainting; oversmoothing on 
complex structures 

Conclusions

Summary


