

Prompting Visual-Language Models for Efficient Video Understanding

Author: Chen Ju et al. Presenters: Myles, Wei, Taixi, Jeff

Motivation

- Current CV is task-specific
- Goal: Multi-task visual representation with minimal tuning
- Challenges with Video Understanding:
 - Resource-intensive
 - Image-text misalignment
 - Composed of frame sequences
- IVL models like CLIP, ALIGN, FILIP excel in general-purpose learning
- IVL models learn from image-caption pairs similar to how video task involve pairing sequences with relevant descriptions
- Solution:
 - Prompt-based learning for efficient video understanding
 - $\circ \qquad \text{Adapt pre-trained CLIP for video tasks}$

Prompt-based learning for Efficient Video Modeling

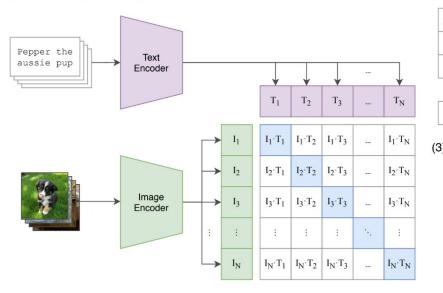
- Current Challenge:
 - Fine-tuning for each task is costly; don't want 100s of models.
- Our Solution:
 - Use CLIP-like general prompts for various tasks.
 - Optimize prompt vectors to match pre-training objectives, helping model generalize.
 - Employ lightweight transformers to encode temporal info from frame-wise features.
- Adaptation Tasks Covered:
 - Action recognition
 - Action localization
 - Text-to-video retrieval.

Model (I-VL)

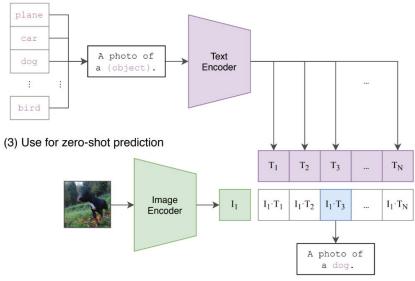
- Review I-VL
- Describe proposed method

Model (I-VL -> CLIP)

(1) Contrastive pre-training



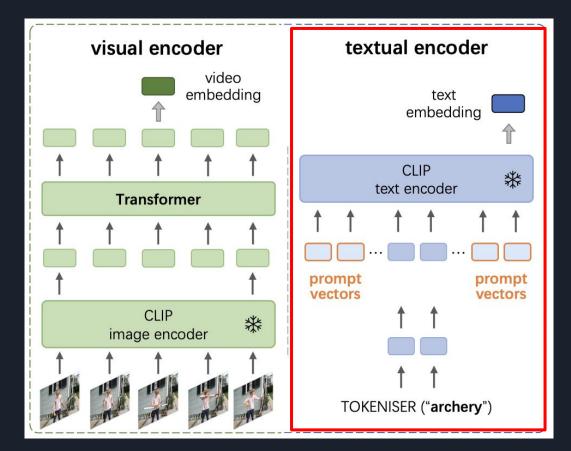
(2) Create dataset classifier from label text



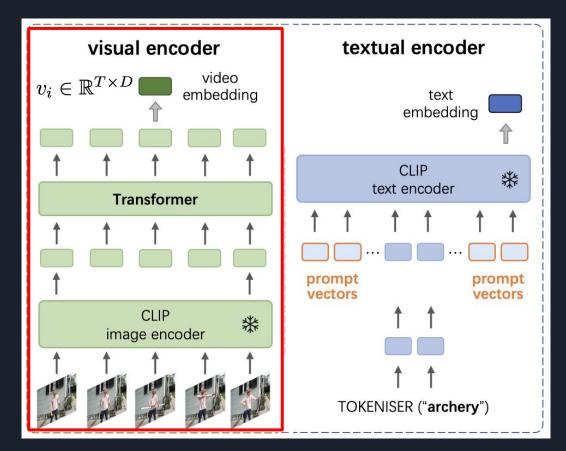
Model(CLIP -> Video)

- Why?

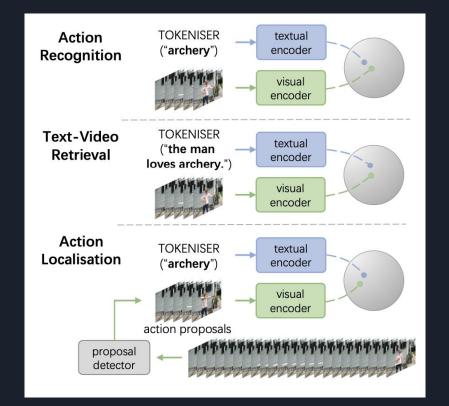
Model (Model Adaption)



Model (Temporal Modeling)



Model(Downstream Tasks)



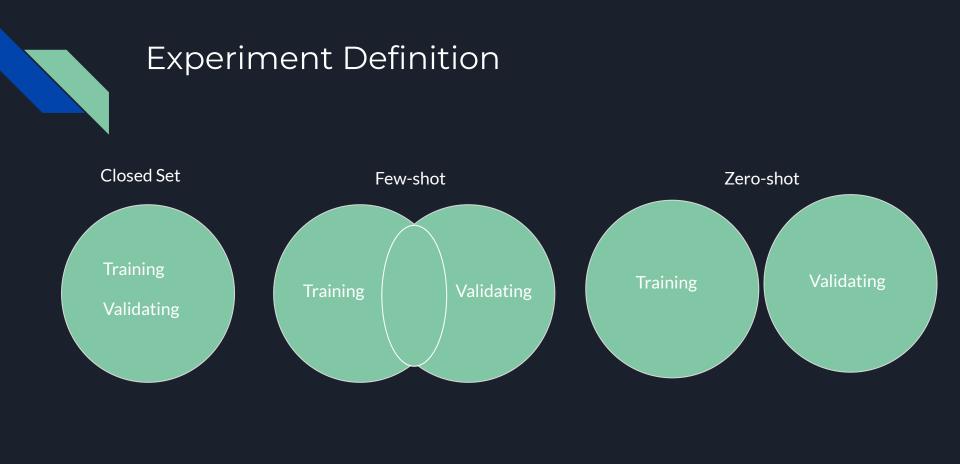
Model (Loss)

- action recognition & text-video retrieval
- action localisation

$$\overline{v}_i = \Phi_{\text{POOL}}(v_i) \in \mathbb{R}^{1 \times D}$$

- Overall NCE loss

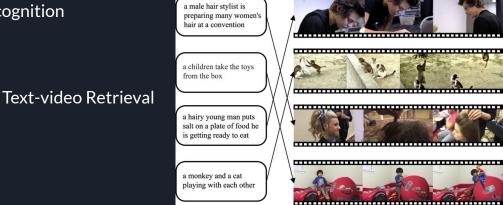
$$\mathcal{L} = -\sum_{i} \left(\log rac{\exp(\overline{v}_i \cdot c_i / au)}{\sum_{j} \exp(\overline{v}_i \cdot c_j / au)}
ight)$$



Experiment Tasks



Action Recognition



shoot

somersault

ball

_____

Action Localization

Experiment: Closed-set ablation

Table 1: Ablation study for closed-set action recognition.

Model			[K-400		K-700		
	Prompt	Temporal	TOP1	TOP5	AVG	TOP1	TOP5	AVG
Baseline-I [69]	hand-craft	×	-		_	- 1		52.4
Baseline-II [69]	×	×	-	1.000	-	-	-	66.1

Experiment: Closed-set ablation

Table 1: Ablation study for closed-set action recognition.

Model			1	K-400		K-700		
	Prompt	Temporal	TOP1	TOP5	AVG	TOP1	TOP5	AVG
Baseline-I [69]	hand-craft	×	- 1		0_0	-		52.4
Baseline-II [69]	×	×	-	-	3 - 3	-	-	66.1
A0	2+X+2	×	65.4	88.7	77.1	56.3	81.9	69.1
A1	4 + X + 4	×	66.1	89.0	77.6	56.6	82.4	69.5
A2	8+X+8	×	67.9	90.0	79.0	57.4	83.0	70.2
A3	16 + X + 16	×	68.8	90.1	79.5	57.8	83.1	70.5
A4	16 + X + 16	1-TFM	75.8	92.9	84.4	64.2	87.3	75.8
A5	16 + X + 16	2-TFM	76.6	93.3	85.0	64.7	88.5	76.6
A6	16 + X + 16	3-TFM	76.9	93.5	85.2	64.8	88.4	76.6
A7	16 + X + 16	4-TFM	76.8	93.5	85.2	64.9	87.9	76.4

Experiment: Closed-set action recognition

Table 2: Comparison on closed-set action recognition. On all datasets, our model performs comparably to existing methods, by training far fewer parameters.

	HMDB-51		UCI	F-101	K-	400	K-700		
Method	TOP1	TOP5	TOP1	TOP5	TOP1	TOP5	TOP1	TOP5	
I3D 13	74.3	122	95.1	0.000	71.6	90.0	58.7	81.7	
S3D-G 85	75.9	-	96.8		74.7	93.4	····		
R(2+1)D 79	74.5		96.8	-	72.0	90.0			
TSM 50				0.225	74.7	0.000		0000	
R3D-50 33	66.0	-	92.0				54.7	-	
NL-I3D 83	66.0	1000		-	76.5	92.6		-	
SlowFast 20		-	_		77.0	92.6			
X3D-XXL 18		-	-	-	80.4	94.6	-		
TimeSformer-L 4	-	1	-	-	80.7	94.7	-	-	
Ours (A5)	66.4	92.1	93.6	99.0	76.6	93.3	64.7	88.5	

Experiment: Few-shot action recognition

Method	K-shot	N-way	Prompt	Temporal	UCF-101	HMDB-51	K-400
CMN 101	5	5	-	-	_	—	78.9
TARN 5	5	5			-	—	78.5
ARN 94	5	5	-		83.1	60.6	82.4
TRX 68	5	5	-	-	96.1	75.6	85.9
Baseline-I 69		5	hand-craft	X	91.9	68.9	95.1
Ours	5	5	✓	×	98.3	85.3	96.4
Ours	5	5	✓	~	97.8	84.9	96.0
Baseline-I 69		\mathcal{C}_{ALL}	hand-craft	×	64.7	40.1	54.2
0	5	CALL	~	×	77.6	56.0	57.1
Ours	5	$\mathcal{C}_{\mathrm{ALL}}$	✓	~	79.5	<mark>56.6</mark>	58.5

Experiment: Closed-set action localization

		1 1				0 1	-					
			1	1	THUM	AOS14	1		A	Activity	yNet1	3
Method	Date	Modality	0.3	0.4	0.5	0.6	0.7	AVG	0.5	0.75	0.95	AVG
CDC 73	2017	RGB+Flow	40.1	29.4	23.3	13.1	7.9	22.8	45.3	26.0	0.2	23.8
TALNET 14	2018	RGB+Flow	53.2	48.5	42.8	33.8	20.8	39.8	38.2	18.3	1.3	20.2
BSN 53	2018	RGB+Flow	53.5	45.0	36.9	28.4	20.0	36.8	46.5	30.0	8.0	30.0
DBS 29	2019	RGB+Flow	50.6	43.1	34.3	24.4	14.7	33.4	-	_		
BUTAL 96	2020	RGB+Flow	53.9	50.7	45.4	38.0	28.5	43.3	43.5	33.9	9.2	30.1
A2NET 89	2020	RGB+Flow	58.6	54.1	45.5	32.5	17.2	41.6	43.6	28.7	3.7	27.8
GTAD 88	2020	RGB+Flow	66.4	60.4	51.6	37.6	22.9	47.8	50.4	34.6	9.0	34.1
BSN++ 77	2021	RGB+Flow	59.9	49.5	41.3	31.9	22.8	41.1	51.3	35.7	8.3	34.9
AFSD 49	2021	RGB+Flow	67.3	62.4	55.5	43.7	31.1	52.0	52.4	35.3	6.5	34.4
TALNET 14	2018	RGB	42.6		31.9	-0-0	14.2	- 1	-	12	020	-
A2NET 89	2020	RGB	45.0	40.5	31.3	19.9	10.0	29.3	39.6	25.7	2.8	24.8
Baseline-III	2022	RGB	36.3	31.9	25.4	17.8	10.4	24.3	28.2	18.3	3.7	18.2
Ours	2022	RGB	50.8	44.1	35.8	25.7	15.7	34.5	44.0	27.0	5.1	27.3

Experiment: Zero-shot action localisation

Table 7: Results of zero-shot action localisation. Baseline-III uses the same proposal detector as our method, but adopts the original CLIP with handcrafted prompts as the proposal classifier. Our model is trained on 75% (or 50%) action categories and tested on the remaining 25% (or 50%) action categories.

			THUMOS14					ActivityNet1.3				
Method	Train $v.s$ Test	0.3	0.4	0.5	0.6	0.7	AVG	0.5	0.75	0.95	AVG	
Baseline-III Ours	75% v.s 25% 75% v.s 25%	33.0 39.7										
Baseline-III Ours	$50\% \ v.s \ 50\% \ 50\% \ v.s \ 50\%$											

Experiment: text-video retrieval

Table 8: **Results of text-video retrieval**. Baseline-IV refers to the original CLIP model with text query naïvely encoded, *i.e.* without using any prompt. E2E denotes if the model has been trained end-to-end. As these methods are pre-trained on different datasets with variable sizes, it is unlikely to make fair comparisons.

		MSRVTT (9K)			IDC	DiD	eMo	SMIT	
Method	E2E	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
CE 55	×	21.7	51.8	12.4	28.5	16.1	41.1	-	-
MMT 23	×	24.6	54.0	13.2	29.2				
TT-CE+ [15]	×	29.6	61.6	17.2	36.5	21.6	48.6		
Baseline-IV	×	31.2	53.7	11.3	22.7	28.8	54.6	39.3	62.8
Ours	×	36.7	64.6	13.4	29.5	36.1	64.8	66.6	87.8
Frozen 3	~	31.0	59.5	15.0	30.8	34.6	65.0	-	
CLIP4Clip 58	~	44.5	71.4	22.6	41.0	43.4	70.2		

I-VL Spec

Transformer x2: **5 Million**

Prompt Vector x16 x2: **16k**

