Problem Overview

Given a video, we want to classify it into one of the human action categories.

Cartwheeling

Braiding Hair

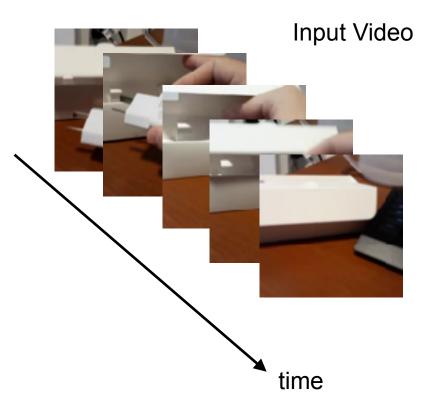
Opening a Fridge

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

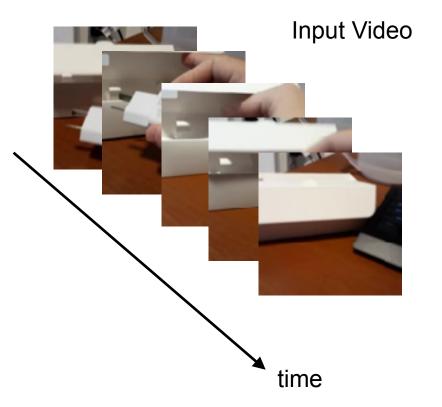
CVPR 2017

Joao Carreira, Andrew Zisserman

Imagenet benchmark has been essential for progress in image modeling over the last decade or so.

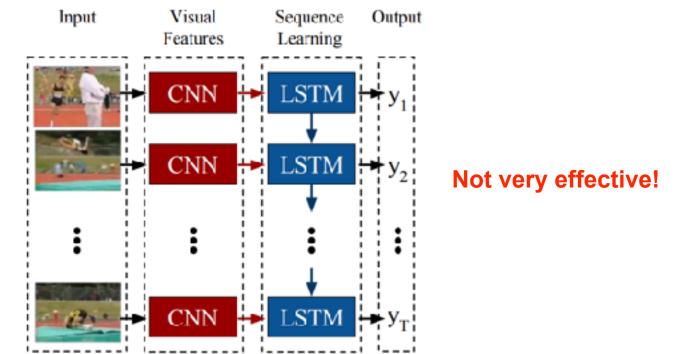


Imagenet benchmark has been essential for progress in image modeling over the last decade or so.



Can large-scale video datasets be useful for video?

A video can be viewed as a collection of images.


A video can be viewed as a collection of images.

How can we use pretrained image models for spatiotemporal feature learning?

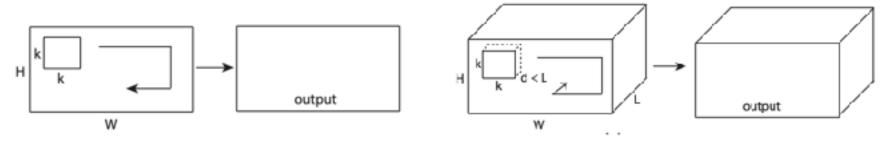
Main Technical Challenge

Adapting 2D CNNs pretrained on Imagenet to video is not trivial.

"Long-term Recurrent Convolutional Networks for Visual Recognition and Description", CVPR 2015

Main Technical Challenge

Adapting 2D CNNs pretrained on Imagenet to video is not trivial.


Conv1a Conv2a 64 2 128	Conv3a	Conv3b	Conv4a	Conv4b	g Conv5a	Conv5b	සු fc6 fc7 මී
64 2 128	a 256	256	512	512	² 512	512	a 4096 4096

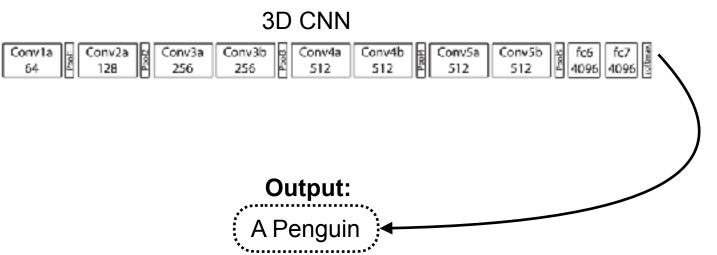
Trained from scratch, which is very costly.

"Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Main Technical Challenge

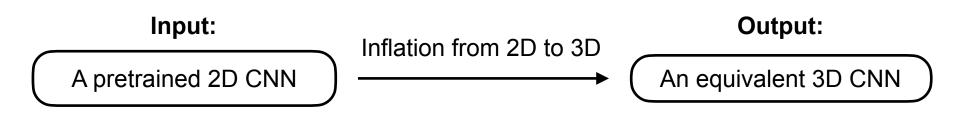
Adapting 2D CNNs pretrained on Imagenet to video is not trivial.

a) 2D convolution


b) 3D convolution

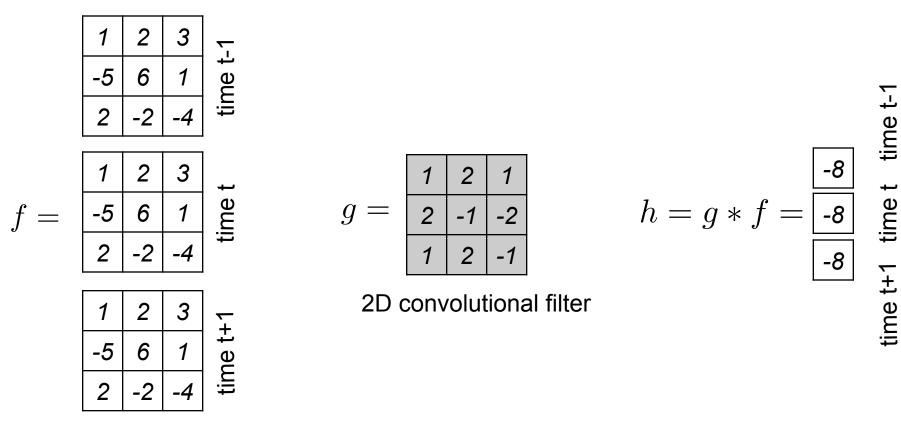
How can we extend pretrained 2D convolutional weights to 3D for video processing?

Training 3D CNNs on Imagenet


One could train a 3D CNN on Imagenet on the stacked copies of an input image.

Stacked Copies of an Input Image

We want to transform a pretrained 2D CNN into an equivalent 3D CNN that re-uses the learned Imagenet features.

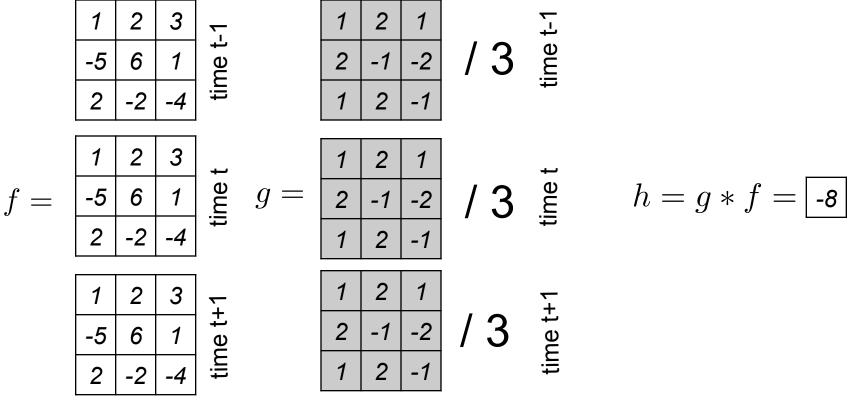

The paper propose to inflate all pretrained 2D filters to 3D.

$$f = \begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 \\ \hline -5 & 6 & 1 \\ \hline 2 & -2 & -4 \end{array}$$

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 2 & -1 & -2 \\ \hline 1 & 2 & -1 \end{array}$$

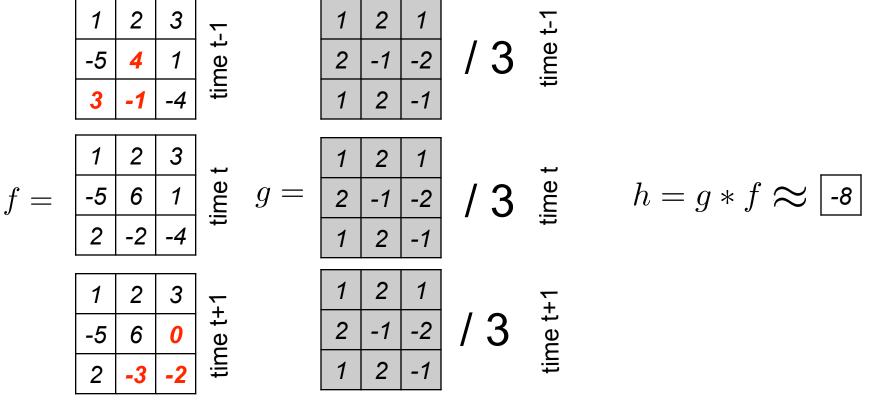
$$h = g * f = \boxed{-8}$$

The paper propose to inflate all pretrained 2D filters to 3D.


a 3D grid (e.g., a video clip)

The paper propose to inflate all pretrained 2D filters to 3D.

	1 2 -5 6 2 -2	3 1 -4	time t-1		1 2 2 -1 1 2	1 -2 -1	time t-1	
f =	1 2 -5 6 2 -2	3 1 -4	time t	g =	122-112	1 -2 -1	time t	$h = g * f = \boxed{-24}$
	1 2 -5 6 2 -2	3 1 -4	time t+1		1 2 2 -1 1 2	1 -2 -1	time t+1	

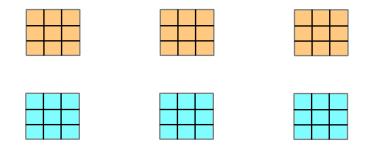

a 3D grid (e.g., a video clip)

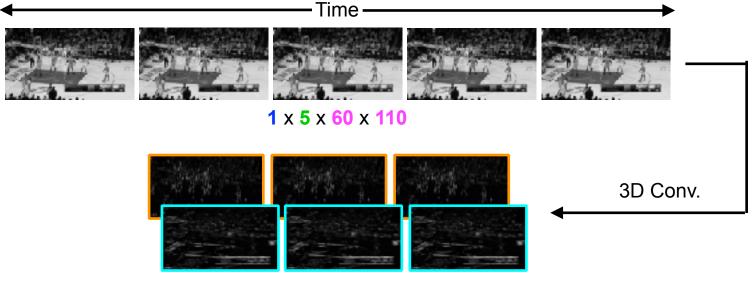
The paper propose to inflate all pretrained 2D filters to 3D.

a 3D grid (e.g., a video clip)

The paper propose to inflate all pretrained 2D filters to 3D.

a 3D grid (e.g., a video clip)

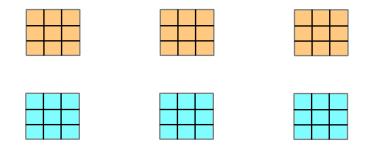

The paper propose to inflate all pretrained 2D filters to 3D.

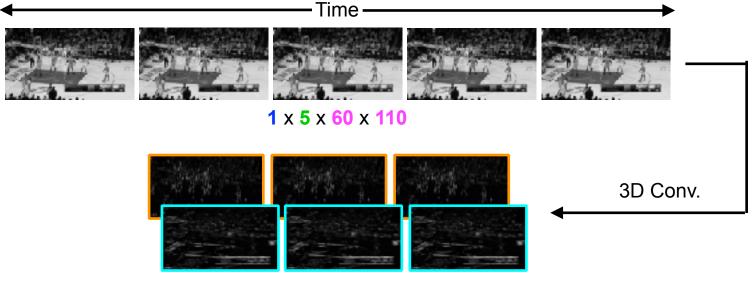

	1 2 -5 6 2 -2	3 1 -4	time t-1		0 0 0	0 0 0	0 0 0	time t-1	
f =	1 2 -5 6 2 -2	3 1 -4	time t	g =	1 2 1	2 -1 2	1 -2 -1	time t	$h = g * f = \boxed{\textbf{-8}}$
	1 2 -5 6 2 -2	3 1 -4	time t+1		0 0 0	0 0 0	0 0 0	time t+1	

a 3D grid (e.g., a video clip)

3D Convolution

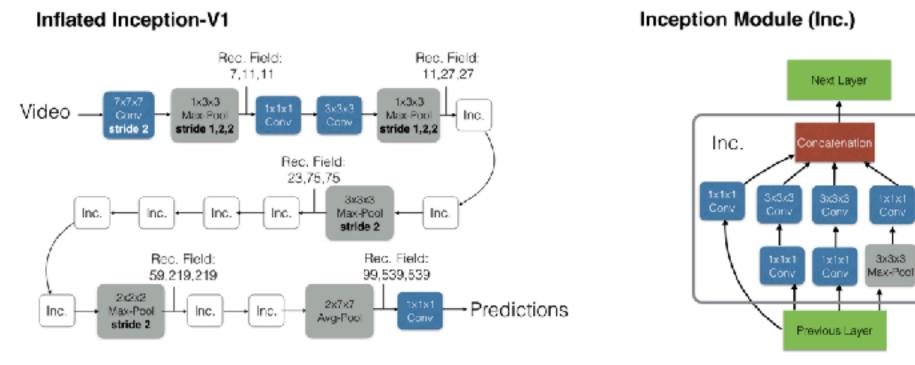
Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)





2 x 3 x 60 x 110

3D Convolution


Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

2 x 3 x 60 x 110

The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right).

3x3x3

Kinetics Dataset

- ~240K YouTube videos manually annotated with 400 human action classes.
- The clips last around 10s.
- Introduced in this same paper together with I3D architecture.

Cartwheeling

Braiding Hair

Importance of Imagenet Pretraining

Comparison with and without ImageNet pretraining.

		Kinetics		ImageNet then Kinetics			
Architecture	RGB	Flow RGB + Flow		RGB	Flow	RGB + Flow	
(a) LSTM	53.9	-	_	63.3	_	-	
(b) 3D-ConvNet	56.1	_	_	_	_	_	
(c) Two-Stream	57.9	49.6	62.8	62.2	52.4	65.6	
(d) 3D-Fused	-	_	62.7	—	—	67.2	
(e) Two-Stream I3D	68.4 (88.0)	61.5 (83.4)	71.6 (90.0)	71.1 (89.3)	63.4 (84.9)	74.2 (91.3)	

Importance of Imagenet Pretraining

Comparison with and without ImageNet pretraining.

		Kinetics		ImageNet then Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	
(a) LSTM	53.9	-	_	63.3	_	-	
(b) 3D-ConvNet	56.1	_	_	_	_	_	
(c) Two-Stream	57.9	49.6	62.8	62.2	52.4	65.6	
(d) 3D-Fused	-	-	62.7	-	—	67.2	
(e) Two-Stream I3D	68.4 (88.0)	61.5 (83.4)	71.6 (90.0)	71.1 (89.3)	63.4 (84.9)	74.2 (91.3)	

Kinetics video pretraining is complementary to Imagenet image pretraining.

Comparison to the State-of-the-Art

Comparison to all prior action recognition methods on UCF-101 and HMDB-51.

Model	UCF-101	HMDB-51
Two-Stream [27]	88.0	59.4
IDT [33]	86.4	61.7
Dynamic Image Networks + IDT [2]	89.1	65.2
TDD + IDT [34]	91.5	65.9
Two-Stream Fusion + IDT [8]	93.5	69.2
Temporal Segment Networks [35]	94.2	69.4
ST-ResNet + IDT [7]	94.6	70.3
Deep Networks [15], Sports 1M pre-training	65.2	-
C3D one network [31], Sports 1M pre-training	82.3	-
C3D ensemble [31], Sports 1M pre-training	85.2	-
C3D ensemble + IDT [31], Sports 1M pre-training	90.1	-
RGB-I3D, Imagenet+Kinetics pre-training	95.6	74.8
Flow-I3D, Imagenet+Kinetics pre-training	96.7	77.1
Two-Stream I3D, Imagenet+Kinetics pre-training	98.0	80.7
RGB-I3D, Kinetics pre-training	95.1	74.3
Flow-I3D, Kinetics pre-training	96.5	77.3
Two-Stream I3D, Kinetics pre-training	97.8	80.9

Two-stream I3D achieves best performance on both datasets.