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Motivation and
Introduction



Context of Al Challenges

- Multimodal machine learning seeks to unify the sensory inputs from different modalities
- Visual and textual
- Perform tasks that mimic human cognitive abilities
- The challenge lies in rapidly adapting to new tasks with minimal examples.
- To perform few-shot learning, the most widely used paradigm is *pre-training™ on a large amount of supervised data before *fine-tuning* the model on
task of interest
- However, this requires:
- Many thousands of annotated data points
- Careful per-task hyperparameter tuning

- Resource intensive



Introduction to Flamingo

- Context
- Current Al models struggle with adapting to new tasks efficiently.
- Asignificant gap in multimodal research, bridging vision and language.
- Flamingo's Goal:
- AVisual Language Model (VLM) targeting few-shot learning efficiency across vision and language tasks
- Bridge pre-trained vision and language models for enhanced multimodal understanding
- Innovation
- Architectural novelties: Efficient handling of sequences with interleaved visual and textual data.
- Training on large-scale multimodal web corpora, for robust few-shot learning capabilities.



Flamingo's Approach to Few Shot Learning

- Architecture
- Unites pre-trained vision and language models.
- Processes sequences with interleaved visual-text data.
- Utilizes 'Perceiver Resampler' for efficient visual information integration.
- DataHandling for Few-Shot Learning
- Trains on large-scale, diverse web-captured datasets.
- Merges multiple types of datasets—interleaved images-text, paired image-text, and video-text—to enforce versatile learning
- Trains to predict text sequences given visual contexts, enabling the model to adapt by example rather than explicit instruction
- Ablation Studies for Enhanced Model Understanding
- Systematically evaluates the influence of individual model components on overall performance to refine design choices
- Validates the performance benefits of the Perceiver Resampler and the interleaved data handling strategy.



MethOds We propose Flamingo, a family of Visual

Language Models that can rapidly adapted
to novel tasks using only a handful of
annotated examples.



Architecture Overview
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Visual Processing
A pretrained and frozen Normalizer-Free ResNet (NFNet-Fé6) is used to extract features from raw pixels
For images inputs, the output of the final stage, a 2D spatial

grid of features is flattened to a 1D sequence

Videos inputs are sampled at 1 FPS to obtain a 3D
spatio-temporal grid, which is then flattened to 1D before

being fed to the Perceiver Resampler
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NFNet is a significantly improved class of Normalizer-Free ResNets in terms of accuracies, as batch
normalization has many undesirable properties stemming from its dependence on the batch size and
interactions between examples.

Despite the significant gap between Convolution and Transformer, the experiment on ImageNet shows that

the fine-tuned NFNet can achieve comparable performance with ViT.
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Contrastive Learning

.-"Image
Encoder

Text
The vision encoder is pre-trained using a contrastive objective on Encoder
datasets of image and text pairs, using the two-term contrastive loss.
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Perceiver Resampler

Perceiver resampler receives spatio-temporal
features from Vision Encoder and outputs a fixed
number of visual tokens regardless of input image
resolution, thus reducing the computational
complexity of vision-text cross attention.
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The Perceiver iteratively attends to the input byte array by alternating cross-attention and latent
self-attention blocks.

The core ideais to introduce a small set of latent units that forms an attention bottleneck through
which the inputs must pass, thus eliminate the quadratic scaling problem.

Weights optionally shared between repeats
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Conditioning Frozen Language Models

The visual tokens from perceiver resampler are then used to condition the frozen LLM using freshly
initialized cross-attention layers that are interleaved between the pretrained LLM layers so that text
generation can be performed by Transformer decoder.
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We freeze the pre-trained LLM blocks, and insert
gated cross-attention dense blocks between the
original layers, trained from scratch.

To ensure the conditioned model yields the same
results as the original language model, we multiply
the output of a newly added layer by tanh(a), where
ais alayer-specific learnable scalar initialized to O.
Such gating mechanism improves training stability
and final performance (which will be shown in
ablation study)
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We perform experiments across three model sizes, building on the 1.4B, 7B and 70B parameter
Chinchilla models; calling them respectively Flamingo-3B, Flamingo-9B and Flamingo-80B. We refer to

the last as Flamingo throughout the paper.

While increasing the parameter count of frozen LLM and trained vision-text gated cross attention dense
modules, we maintain a fixed-size frozen token vision encoder and trainable perceiver resampler across

different models.

Requires Frozen Trainable Total

model sharding | Language Vision | GATED XATTN-DENSE Resampler | count

Flamingo-3B X 1.4B 435M 1.2B (every) 194M | 3.2B
Flamingo-9B X 7.1B 435M 1.6B (every 4th) 194M | 9.3B
Flamingo v 70B  435M 10B (every 7th) 194M | 80B




Multi-Visual Input Support

Flamingo models the likelihood of text y conditioned on interleaved images or videos x as

L
p(ylz) = I[,_y p(uily<t, z<1)

At a given text token, the model attends to the visual tokens of image that appeared just before it. This
single-image cross attention scheme importantly allows the model to seamlessly generalize to any
number of visual inputs, regardless of how many are used during training.

However, the dependency on all previous images remains via self-attention in the LLM.



Masked cross attention
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Training on a Mixture of Vision and Language Datasets

We train Flamingo models on a mixture of three kinds of dataset, all scraped from the web without any
annotation:
1. Multimodal Massive Web(M3W) dataset

Pairs of image and text: ALIGN, LTIP
3. Pairs of video and text: VTP

N
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Multi-objective training and optimisation strategy: We train the model by minimizing a weighted sum of
per-dataset expected negative log-likelihood given visual inputs
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Task Adaption with Few-Shot In-Context Learning

We evaluate the ability of our models to rapidly adapt to new tasks using in-context learning, by
interleaving supporting example pairs in form of (image, text) or (video, text), followed by the query visual
input.

We perform open-ended evaluations (visual question answering, captioning task) as well as close-ended
evaluations (multiple choice visual question answering).

We also explore zero-shot generalization by prompting the model with two text-only examples from the
task.



Experiments

Input Prompt

Thisisa
chinchilla. They
are mainly found

in Chile.

This is a shiba.
They are very
popular in Japan.

This is

—

[ 7 Completion

\

a flamingo.
They are found
in the
Caribbean and
South America.




Few Shot Learning on Vision-Language Tasks

- Evaluated across 16 diverse benchmarks for vision-language tasks.

- Demonstrates the ability to efficiently adapt to new tasks with a minimal number of examples, sometimes as few as

four, significantly reducing the data requirement for high performance.
- Qutperforms zero-shot and few-shot state-of-the-art (SotA) methods, with significant gains in benchmarks like
VQAV2, COCO, and TextVQA. For instance, in VQAV2, it achieves a new few-shot SotA performance.

- Achieving 57.8% accuracy in VQAv2 with only 32 examples



The larger the model, the better the few-shot performance. The performance also improves with number
of shots
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Fine-tuning Flamingo as a Pretrained
Vision-Language Model

- Post fine-tuning, Flamingo sets new SotA on five additional challenging benchmarks, such as VQAv2 and COCO,
indicating substantial improvements over pre fine-tuning performances
- Thefine-tuning process employs a higher annotation budget, contrasting the few-shot learning scenario, thereby

showecasing the model's scalability and effectiveness in leveraging larger datasets for performance enhancements



Mecthod VQAV2 COCO | VATEX VizWiz MSRVTTQA VisDial YouCook2 TextVQA HatelulMemes
test-dev  test-std test test test-dev  test-std test valid | test-std valid valid | test-std test seen
= 32 shots 67.6 - 113.8 65.1 498 - 31.0 56.8 - 86.8 36.0 - 70.0
*Finetuned 820 821 1381 842 657 654 47.4 61.8 597 1186 571  54.1 86.6
SotA 81.37 81.31 149.67 81471 57.21 60.67 46.8 75.2 7541 138.7 54.7 73.7 84.67
N [133] [133) [119] [153] [65] [65] [51] [79] [123] [132] [137)] [84] [152]




Ablation Studies for Enhanced Model Understanding

- The ablation studies reveal significant findings, such as the importance of the Perceiver Resampler for efficient visual
information processing and the effectiveness of training on a diverse web-captured dataset mix.
- Validates the architectural design choices made in Flamingo, with empirical evidence supporting the inclusion of

specific components and strategies to achieve high performance in vision-language tasks.



Ablated Flamingo-3B Changed Param. Step | COCO OKVQA VQAv2 MSVDQA VATEX | Overall
setting original value  value count | time ] | CIDErf toplt toplt toplt CIDErt | scoret
Flamingo-3B model 3.2B 1.74s 86.5 42.1 55.8 36.3 534 70.7
w/o Video-Text pairs 3.2B 1.42s 84.2 43.0 539 345 46.0 67.3
. EE— e w/o Image-Text pairs 32B  0.95s 66.3 39.2 51.6 32.0 41.6 60.9
O Tesiningdatx. -Alldata Image-Text pairs > LAION | 32B  1.74s | 795 414 535 339 476 | 664
w/o M3W 3.2B 1.02s 54.1 36.5 52.7 314 23.5 534
(ii)  Optimisation Accumulation  Round Robin 3.2B 1.68s 76.1 398 521 332 40.8 629
(iii) Tanh gating v X 3.2B 1.74s 78.4 40.5 529 359 47.5 66.5
(iv) Cross-attention GATED VANILLA XATTN 2.4B 1.16s 80.6 41.5 534 329 50.7 66.9
architecture XATTN-DENSE  GRAFTING 33B  1.74s | 792 36.1 50.8 322 47.8 63.1
o Single in middle 20B  0.87s TS 38.1 50.2 29.1 423 59.8
(v) frequency Every Every 4th 2.3B 1.02s 823 427 55.1 34.6 50.8 68.8
Every 2nd 2.6B 1.24s 83.7 41.0 55.8 34.5 49.7 68.2
(vl) Resampler Picaiiic MLP 3.2B 1.85s 78.6 422 54.7 352 44.7 66.6
g Transformer 3.2B 1.81s 83.2 41.7 55.6 31.5 48.3 66.7
2% s s CLIP ViT-L/14 3.1B 1.58s 76.5 41.6 534 33.2 445 64.9
() Visiomeaogtos BTN NFNet-F0 29B 1455 | 738 405 528 311 29 | 627
2 X (random init) 3.2B 242s 74.8 31.5 45.6 26.9 50.1 57.8
Wiy, BecozmpTM, iof X (pretrained) 32B 242 | 812 337 474 310 539 | 627




Remarks and
Conclusion



Key Architectural Innovations

. Bridge powerful visual-only and language-only models
2. Handle sequences of arbitrarily interleaved visual and textual (multimodal) data; Seamlessly ingest
images or videos as inputs
3. Canperform various multimodal tasks (such as captioning, visual dialogue and visual
guestion-answering) from only a few input/output examples
4. Set anew state-of-the-art in few shot learning on a wide array of 16 multimodal tasks, and it
surpasses fine tuned state-of-the-art model in 6 out of 16 tasks



Limitations

LLM play a role in occasional hallucination and ungroundedness guesses.

2. Classification performance lags behind STOA contrastive models as the model handles a wider
range of tasks such as open-ended ones.

3. In-context learning is highly sensitive and depend on the characteristics of the application at hand.

4. Exposed to therisk such as outputting offensive language, propagating social biases and
stereotypes, leaking private information.



