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Motivation

Traditional 2D CNNSs are not designed to learn
spatiotemporal features from video inputs.
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Motivation

CNN + LSTM approaches are not very effective when

applied on large-scale datasets.
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3D Convolutional Networks

e Deep 3-dimensional convolutional networks (3D CNNSs) for
spatiotemporal feature learning from video inputs.
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3D Convolutional Networks

e Deep 3-dimensional convolutional networks (3D CNNSs) for
spatiotemporal feature learning from video inputs.
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Instead of using 2D convolutions, we will use
video frames 1,2, ..., L 3D convolutions in every convolutional layer
inside the network.



3D Convolutional Networks

e Deep 3-dimensional convolutional networks (3D CNNSs) for
spatiotemporal feature learning from video inputs.
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| Instead of 3 x 3 convolutions we
video frames 1,2, ..., L will use 3 x 3 x 3 convolutions.



3D Convolutional Networks

e Deep 3-dimensional convolutional networks (3D CNNSs) for
spatiotemporal feature learning from video inputs.
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| Instead of 3 x 3 convolutions we
video frames 1,2, ..., L will use 3 x 3 x 3 convolutions.

The additional dimension in the convolutional kernel will allow
us to learn spatiotemporal information from multiple frames.



3D Convolutional Networks

e Deep 3-dimensional convolutional networks (3D CNNSs) for
spatiotemporal feature learning from video inputs.
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Instead of 3 x 3 convolutions we

video frames 1, 2, ... , L will use 3 x 3 x 3 convolutions.
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2D Convolution

a 2D grid of values that we want

to convolve (e.g. an image) 2D convolutional filter
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2D Convolution

a 2D grid of values that we want

to convolve (e.g. an image) 2D convolutional filter
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2D Convolution
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3D Convolution

a 3D grid of values that we

want to convolve (e.g. a video) 3D convolutional filter
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3D Convolution
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3D Convolution

a 3D grid of values that we
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3D Convolution

a 3D grid of values that we

want to convolve (e.g. a video) 3D convolutional filter
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2D Convolution

Learnable 3 x 3 Convolutional Kernels (Spatial)
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3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)
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3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

< Time >

3D Conv.

1x3x60x110 2x1x60x110

3D convolution enables learning temporal information from the video.



3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)
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3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)
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3D Convolution

* Applying 2D convolution produces a 2D grid.

* Applying 3D convolution yields a 3D volume that preserves
temporal information.
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3D CNN Architecture

« Eight 3D convolutional layers consisting of three
dimensional 3x3x3 convolutional kernels.

* Five max-pooling layers.

« Two fully connected layers followed by a softmax output

layer.
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Sports-1M (Pre-training)

* 1 million YouTube videos annotated with 487 classes.

 The 3D CNN model is pre-trained on Sports-1M to predict one
of the 487 sports categories for each video.

1 ice_skatings0.98
2 gpesd skatings0.01



Transfer Learning to UCF-101

« UCF-101 consists of 13,320 videos from 101 action categories.

» A pretrained 3D CNN model is finetuned on UCF-101.

* Alinear classifier (e.g., SVM) is trained on top of 3D CNN features
from the last fully connected layer.
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Results on UCF-101

« Performance evaluated as action recognition accuracy.

Method Accuracy (%)
Imagenet + linear SVM 68.8
iDT w/ BoW + linear SVM 76.2
Deep networks [18] 65.4
Spatial stream network [56] 726
LRCN [5] 71.1
LSTM composite model [29] 75.8
C3D (1 net) + linear SYM 82.3
C3D (3 nets) + linear SYM 85.2
iDT w/ Fisher vector [31] 87.9
Temporal stream network [26] 83.7
Two-stream networks [106] 83.0
LRCN (5] 82.9
LSTM composite model [*9] 84.3
Conv. pooling on long clips [29] 88.2
[.STM on long clips [29] 88.0
Multi-skip feature stacking [25] 89.1
C3D (3 nets) + IDT + linear SVM .4



Results on UCF-101

« Performance evaluated as action recognition accuracy.

Method Accuracy (%)
Imagenet + linear SVM 63.8
iDT w/ BoW + linear SVM 76.2
Deep networks [18] 65.4
Spatial stream network [56] 726
LRCN [6] 71.1
LSTM composite model [29] 75.8
hm (L nel) + linear SYM 823 )
C3D (3 nets) + linear SYM 85.2 JD
iDT w/ Fisher vector [31] 87.9
Temporal stream network [36] 83.7
Two-stream networks [106] 83.0
LRCN (5] 82.9
LSTM composite model [39] 84.3
Conv. paoling on long clips [29] 88.2
[.STM on long clips [29] 88.0
Multi-skip feature stacking [25] 89.1
15(330 (3 nets) + iDT + linear SVM 9%0.4

C3D is better than all prior approaches, including LRCN



Results on UCF-101

» Feature embedding visualizations of Imagenet and C3D on UCF101
using t-SNE.

Imagenet C3D



Runtime Analysis

* Runtime comparison between C3D and prior action recognition
methods.

Method iDT Brox’s | Brox’s | C3D
Usage CPU CPU GPU | GPU
RT (hours) | 202.2 | 2513.9 | 607.8 2.2
FPS 3.5 0.3 1.2 313.9
X Slower 914 | 11359 | 274.6 1




Runtime Analysis

* Runtime comparison between C3D and prior action recognition
methods.

Method iDT | Brox’s | Brox’s | C3D
Usage CPU CPU GPU | GPU
RT (hours) | 202.2 | 2513.9 | 607.8 2.2
FPS 3.5 0.3 1.2 313.9
(x Slower | 914 | 11359 | 2746 1)

C3D is 91x faster than iDT and 274x faster than
Brox’s GPU implementation.



Ablations

« Comparison between different variants of 3D CNN architectures.
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Ablations

« Comparison between different variants of 3D CNN architectures.
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Based on these results, 3x3x3 is the best kernel choice for 3D CNNs.



Summary

« A simple, yet effective 3D CNN architecture for large-
scale spatiotemporal feature learning.

» Better accuracy and inference run-time than prior hand-
crafted or optical flow-based action recognition methods.

« 3D CNNs have much larger learning capacity than 2D
CNNSs.

« 3D CNNs are much more costly than 2D CNNs.



Discussion Points

* Why are 3x3x3 convolutional kernels most effective? Are
they sufficient for learning temporal video dynamics?

* Other variants of 3D CNNs were proposed before this
paper. Considering this, why was this paper so
impactful?



First Assignment

» The reading list is posted here.

» Select the following:

1. Seven 30min or 45min papers for standard paper presentations
(marked red and purple in the schedule). Any combo of the papers
suffice (e.g., five 30min & two 45min papers, all 30min papers, etc.)

2. Three 20min papers for paper battles (marked green in the schedule).
« Make sure that the papers that you selected will NOT be presented by me.

« Rank the papers in each of these lists in descending order of preference
(from highest to lowest) and upload them to Canvas by Sunday, Aug 27th,
11:59 PM (please include paper IDs in your lists!!).

* | will then update the website with the paper assignments.


https://www.gedasbertasius.com/comp790-23f-schedule

Second Assignment

« Complete the paper critique for paper [5] SlowFast Networks
for Video Recognition.

» Upload it to Canvas by 1 PM on Wednesday, August 30th.


https://arxiv.org/pdf/1812.03982.pdf
https://arxiv.org/pdf/1812.03982.pdf

