Learning Spatiotemporal Features with 3D Convolutional Networks

ICCV 2015

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri

Motivation

Traditional 2D CNNs are not designed to learn spatiotemporal features from video inputs.

Motivation

CNN + LSTM approaches are not very effective when applied on large-scale datasets.

 Deep 3-dimensional convolutional networks (3D CNNs) for spatiotemporal feature learning from video inputs.

video frames 1, 2, ..., L

• Deep 3-dimensional convolutional networks (3D CNNs) for spatiotemporal feature learning from video inputs.

video frames 1, 2, ..., L

Instead of using 2D convolutions, we will use 3D convolutions in every convolutional layer inside the network.

 Deep 3-dimensional convolutional networks (3D CNNs) for spatiotemporal feature learning from video inputs.

video frames 1, 2, ..., L

Instead of 3 x 3 convolutions we will use 3 x 3 x 3 convolutions.

 Deep 3-dimensional convolutional networks (3D CNNs) for spatiotemporal feature learning from video inputs.

The additional dimension in the convolutional kernel will allow us to learn spatiotemporal information from multiple frames.

• Deep 3-dimensional convolutional networks (3D CNNs) for spatiotemporal feature learning from video inputs.

a 2D grid of values that we want to convolve (e.g. an image)

2D convolutional filter

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

$$h_{ij} = \sum_{m=0}^{M} \sum_{n=0}^{N} g_{mn} f_{(i-m)(j-n)} \qquad i = 1, 2, ..., H \\ j = 1, 2, ..., W$$

a 2D grid of values that we want to convolve (e.g. an image)

2D convolutional filter

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

$$h_{ij} = \sum_{m=0}^{M} \sum_{n=0}^{N} g_{mn} f_{(i-m)(j-n)} \qquad i = 1, 2, ..., H \\ j = 1, 2, ..., W$$

a 2D grid of values that we want to convolve (e.g. an image)

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

$$g = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

2D convolutional filter

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

$$h_{ij} = \sum_{m=0}^{M} \sum_{n=0}^{N} g_{mn} f_{(i-m)(j-n)} \qquad i = 1, 2, ..., H \\ j = 1, 2, ..., W$$

a 2D grid of values that we want to convolve (e.g. an image)

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

$$g = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

2D convolutional filter

$$g = \begin{array}{|c|c|c|c|c|} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \end{array}$$

$$h_{ij} = \sum_{m=0}^{M} \sum_{n=0}^{N} g_{mn} f_{(i-m)(j-n)} \qquad i = 1, 2, ..., H \\ j = 1, 2, ..., W$$

a 2D grid of values that we want to convolve (e.g. an image)

2D convolutional filter

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$$

$$h_{ij} = \sum_{m=0}^{M} \sum_{n=0}^{N} g_{mn} f_{(i-m)(j-n)} \qquad i = 1, 2, ..., H \\ j = 1, 2, ..., W$$

a 3D grid of values that we want to convolve (e.g. a video)

3D convolutional filter

$$h_{ijk} = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L} g_{mnk} f_{(i-m)(j-n)(k-l)}$$

a 3D grid of values that we want to convolve (e.g. a video)

3D convolutional filter

$$g = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h_{ijk} = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L} g_{mnk} f_{(i-m)(j-n)(k-l)}$$

a 3D grid of values that we want to convolve (e.g. a video)

3D convolutional filter

$$g = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h_{ijk} = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L} g_{mnk} f_{(i-m)(j-n)(k-l)}$$

a 3D grid of values that we want to convolve (e.g. a video)

3D convolutional filter

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

$$h_{ijk} = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L} g_{mnk} f_{(i-m)(j-n)(k-l)}$$

a 3D grid of values that we want to convolve (e.g. a video)

3D convolutional filter

$$g = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h_{ijk} = \sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{l=0}^{L} g_{mnk} f_{(i-m)(j-n)(k-l)}$$

Learnable 3 x 3 Convolutional Kernels (Spatial)

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

3D convolution enables learning temporal information from the video.

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

- Applying 2D convolution produces a 2D grid.
- Applying 3D convolution yields a 3D volume that preserves temporal information.

3D CNN Architecture

- Eight 3D convolutional layers consisting of three dimensional 3x3x3 convolutional kernels.
- Five max-pooling layers.
- Two fully connected layers followed by a softmax output layer.

Sports-1M (Pre-training)

- 1 million YouTube videos annotated with 487 classes.
- The 3D CNN model is pre-trained on Sports-1M to predict one of the 487 sports categories for each video.

Transfer Learning to UCF-101

- UCF-101 consists of 13,320 videos from 101 action categories.
- A pretrained 3D CNN model is finetuned on UCF-101.
- A linear classifier (e.g., SVM) is trained on top of 3D CNN features from the last fully connected layer.

a) Feature Extraction using a 3D CNN

b) UCF-101

Results on UCF-101

Performance evaluated as action recognition accuracy.

Method	Accuracy (%)	
Imagenet + linear SVM	68.8	
iDT w/ BoW + linear SVM	76.2	
Deep networks [18]	65.4	
Spatial stream network [36]	72.6	
LRCN [6]	71.1	
LSTM composite model [39]	75.8	
C3D (1 net) + linear SVM	82.3	
C3D (3 nets) + linear SVM	85.2	
iDT w/ Fisher vector [31]	87.9	
Temporal stream network [36]	83.7	
Two-stream networks [36]	88.0	
LRCN [6]	82.9	
LSTM composite model [39]	84.3	
Conv. pooling on long clips [29]	88.2	
LSTM on long clips [29]	88.6	
Multi-skip feature stacking [25]	89.1	
C3D (3 nets) + iDT + linear SVM	90.4	

Results on UCF-101

Performance evaluated as action recognition accuracy.

Method	Accuracy (%)		
Imagenet + linear SVM	68.8		
iDT w/ BoW + linear SVM	76.2		
Deep networks [18]	65.4		
Spatial stream network [36]	72.6		
LRCN [6]	71.1		
LSTM composite model [39]	75.8		
C3D (1 net) + linear SVM	82.3		
C3D (3 nets) + linear SVM	85.2		
iDT w/ Fisher vector [31]	87.9		
Temporal stream network [36]	83.7		
Two-stream networks [36]	88.0		
LRCN [6]	82.9		
LSTM composite model [39]	84.3		
Conv. pooling on long clips [29]	88.2		
LSTM on long clips [29]	88.6		
Multi-skip feature stacking [25]	89.1		
C3D (3 nets) + iDT + linear SVM	90.4		

C3D is better than all prior approaches, including LRCN

Results on UCF-101

 Feature embedding visualizations of Imagenet and C3D on UCF101 using t-SNE.

Runtime Analysis

 Runtime comparison between C3D and prior action recognition methods.

Method	iDT	Brox's	Brox's	C3D
Usage	CPU	CPU	GPU	GPU
RT (hours)	202.2	2513.9	607.8	2.2
FPS	3.5	0.3	1.2	313.9
x Slower	91.4	1135.9	274.6	1

Runtime Analysis

 Runtime comparison between C3D and prior action recognition methods.

Method	iDT	Brox's	Brox's	C3D
Usage	CPU	CPU	GPU	GPU
RT (hours)	202.2	2513.9	607.8	2.2
FPS	3.5	0.3	1.2	313.9
x Slower	91.4	1135.9	274.6	1

C3D is 91x faster than iDT and 274x faster than Brox's GPU implementation.

Ablations

Comparison between different variants of 3D CNN architectures.

Ablations

Comparison between different variants of 3D CNN architectures.

Based on these results, 3x3x3 is the best kernel choice for 3D CNNs.

Summary

- A simple, yet effective 3D CNN architecture for largescale spatiotemporal feature learning.
- Better accuracy and inference run-time than prior handcrafted or optical flow-based action recognition methods.
- 3D CNNs have much larger learning capacity than 2D CNNs.
- 3D CNNs are much more costly than 2D CNNs.

Discussion Points

- Why are 3x3x3 convolutional kernels most effective? Are they sufficient for learning temporal video dynamics?
- Other variants of 3D CNNs were proposed before this paper. Considering this, why was this paper so impactful?

First Assignment

- The reading list is posted <u>here</u>.
- Select the following:
 - 1. Seven 30min or 45min papers for standard paper presentations (marked <u>red</u> and <u>purple</u> in the schedule). Any combo of the papers suffice (e.g., five 30min & two 45min papers, all 30min papers, etc.)
 - 2. Three 20min papers for paper battles (marked green in the schedule).
- Make sure that the papers that you selected will NOT be presented by me.
- Rank the papers in each of these lists in descending order of preference (from highest to lowest) and upload them to Canvas by Sunday, Aug 27th, 11:59 PM (please include paper IDs in your lists!!).
- I will then update the website with the paper assignments.

Second Assignment

- Complete the paper critique for paper [5] <u>SlowFast Networks</u> for Video Recognition.
- Upload it to Canvas by 1 PM on Wednesday, August 30th.