
Scaling Vision Transformers to 22 Billion 
Parameters 

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, 
Justin Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim 

Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag 
Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci, 
Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, 
Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey 

Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, 
Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua 

Zhai, Daniel Keysers, Jeremiah Harmsen, Neil Houlsby 

PMLR 2023



• Scaling has been one of the most important trends in the 
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~1000x times smaller 
SOTA models in CV

b) Computer Vision



1. Performance depends strongly on scale (model size, 
dataset size, the amount of compute) and weakly on 
model shape (model depth or width). 

2. Performance improves predictably as long as we scale up 
the model and data in tandem. 

3. Large models are more sample-efficient than small 
models.

Scaling Laws for Transformers in NLP

Kaplan et al. “Scaling Laws for Neural Language Models,” 2020.
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Loss vs Model and Data Size

How do these findings transfer to vision domain? 

Large models are more sample-efficient than small 
models.



1. Scaling up compute, model and data together improves 
representation quality

Scaling in Computer Vision

Zhai et al. “Scaling Vision Transformers,” 2022.



2. Representation quality can be bottlenecked by model 
size.

Scaling in Computer Vision

Zhai et al. “Scaling Vision Transformers,” 2022.

E
rr

or



3. Large models benefit from additional data, even 
beyond 1B images.

Scaling in Computer Vision

Zhai et al. “Scaling Vision Transformers,” 2022.
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4. Large models are more sample efficient.

Scaling in Computer Vision

Zhai et al. “Scaling Vision Transformers,” 2022.



4. Large models are more sample efficient.

Scaling in Computer Vision

How can we efficiently/effectively scale computer vision models?



Architecture Details



• The authors introduce three main modifications to 
improve efficiency and training stability at scale: 

1. Parallel Layers 
2. QK Normalization 
3. Omitting Bias Vectors on QKV Projections 

and Layer Norms
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• ViT-22B applies the Attention and MLP blocks in 
parallel, instead of sequentially as in the standard ViT.

Parallel Layers

Can be computed in parallel
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• To avoid divergent training, the authors apply 
LayerNorm to the queries and keys before the dot 
product attention computation.

QK Normalization



• QK normalization prevents divergence due to 
uncontrolled attention logit growth.

QK Normalization
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• Omitting bias vectors improves accelerator utilization 
(by 3%), without quality degradation

Omitting Bias Vectors



Training Infrastructure

• Training infrastructure leverages both model and data 
parallelism.



Other Details

• ViT-22B is trained on JFT extended to 4B images with 
30K categories. 

• Training is done using 1024 TPU V4 chips for 177K 
steps with a batch size of 65K (~3 epochs in total). 



Model Card



Model Card



Experimental Setup

• After pretraining on JFT, transfer learning results are 
done using ViT-22B as a frozen feature extractor.



Image Classification

• Linear evaluation on Imagenet-1K with varying scale.



Out-of-distribution Classification

• Scaling the model increases out-of-distribution 
performance in line with the improvements on ImageNet
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Dense Prediction Tasks

• The authors investigate transfer learning performance 
for dense prediction tasks.

a) Semantic segmentation results

b) Depth estimation results



Video Classification

• The authors evaluate the quality of the representations 
learned by ViT-22B by adapting the model pretrained on 
images for video classification.



Fairness

• ViT-22B provides more equitable performance 
compared to smaller ViT architectures



Alignment with Human Perception

• Evaluating how well ViT-22B classification decisions 
align with human perception.



Distillation

• The authors perform model distillation to compress the 
ViT-22B into smaller, more widely usable ViTs.



Zero-shot Classification


