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Motivation

» Scaling has been one of the most important trends in the
last several years.

Model Size
GPT3 [55] 175B
PanGU- « [75] 207B
OPT [81] 175B
PalLM [56] 540B
BLOOM [69] 176B
MT-NLG [97] 530B
Gopher [59] 280B
Chinchilla [34] 70B
Galactica [35] 120B
LaMDA [63] 137B
Jurassic-1 [91] 178B
LLaMA [57] 65B
GLM-130B [83] 130B
T5 [73] 11B

a) Natural Language Processing
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ViT-Huge (632M

b) Computer Vision

~1000x times smaller
SOTA models in CV



Scaling Laws for Transformers in NLP

. Performance depends strongly on scale (model size,
dataset size, the amount of compute) and weakly on
model shape (model depth or width).

. Performance improves predictably as long as we scale up
the model and data in tandem.

. Large models are more sample-efficient than small
models.

Kaplan et al. “Scaling Laws for Neural Language Models,” 2020.



Loss vs Model and Data Size

Large models are more sample-efficient than small
models.

Loss vs Model and Dataset Size
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Loss vs Model and Data Size

Large models are more sample-efficient than small
models.

Loss vs Model and Dataset Size

.. ®
4.5 e
‘... '-' .................. .. ................................ ...
4.0 e Params
,»Q:. -,. .....
®.... ®.... L ®.. 708M
n | 9. 302M
»n 3.5
o 8. ® 85M
— B 0. ¢ 3M
3 O Y o ® 25M
' 9. ® 393.2K
2.51

107 . 103 . 109 - '1”(510 N
Tokens in Dataset

How do these findings transfer to vision domain?



Scaling in Computer Vision

1. Scaling up compute, model and data together improves
representation quality
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Zhai et al. “Scaling Vision Transformers,” 2022.



Scaling in Computer Vision

2. Representation quality can be bottlenecked by model
size.
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Scaling in Computer Vision

3. Large models benefit from additional data, even
beyond 1B images.
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Scaling in Computer Vision

4. Large models are more sample efficient.
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Scaling in Computer Vision

4. Large models are more sample efficient.

ImageNet 10-shot error rate [%] ImageNet finetune error rate [%]
—u—B/32
oy
3() - ) \‘ —u—L/16
" —--—— n <;*“—-----,
\\ . *—-“___-"
—
-
_—
.-
a8
. : : 10 — : .
107 103 104 10 103 104
Images Seen (M) Images Seen (M)

How can we efficiently/effectively scale computer vision models?



Architecture Detalls

Name Width Depth MLP Heads Params |[M]
ViT-G 1664 48 8192 16 1843
ViT-e 1792 56 15360 16 3926
ViT-22B 6144 48 24576 48 21743




ViT-22B Implementation Details

 The authors introduce three main modifications to
improve efficiency and training stability at scale:

1. Parallel Layers
2. QK Normalization

3. Omitting Bias Vectors on QKV Projections
and Layer Norms
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Parallel Layers

« ViT-22B applies the Attention and MLP blocks in
parallel, instead of sequentially as in the standard ViT.

y" = LayerNorm(z),
y =z + MLP(y") + Attention(y’).

~

Can be computed in parallel
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QK Normalization

 To avoid divergent training, the authors apply
LayerNorm to the queries and keys before the dot
product attention computation.

softmax [ALN(XWQ)(LN(XWK))T]

N



QK Normalization

* QK normalization prevents divergence due to
uncontrolled attention logit growth.
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Omitting Bias Vectors

« Omitting bias vectors improves accelerator utilization
(by 3%), without quality degradation
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Training Infrastructure

 Training infrastructure leverages both model and data
parallelism.

_____________________________________________________________________________________________________



Other Detalils

* ViT-22B is trained on JFT extended to 4B images with
30K categories.

 Training is done using 1024 TPU V4 chips for 177K
steps with a batch size of 65K (~3 epochs in total).



Model Card

Model Summary

Model Architecture Dense encoder-only model with 22 billion parameters. Transformer model
architecture with variants to speed up and stabilize the training. For details,
see Model Architecture (Section 2).
Input(s) | The model takes images as input.
Qutput(s) | The model generates a class label as output during pretraining.
Usage
Application The primary use is research on computer vision applications as a feature extrac-

tor that can be used in image recognition (finetuning, fewshot, linear-probing,
zeroshot), dense prediction (semantic segmentation, depth estimation), video
action recognition and so on. On top of that, ViT-22B is used in research that
aim at understanding the impact of scaling vision transformers.

Known Caveats

When using ViT-22B, similar to any large scale model, it is difficult to under-
stand how the model arrived at a specific decision, which could lead to lack of
trust and accountability.

Moreover, we demonstrated that ViT-22B is less prone to unintentional bias
and enhances current vision backbones by reducing spurious correlations.
However, this was done through limited studies and particular benchmarks.
Besides, there is always a risk of misuse in harmful or deceitful contexts when
it comes to large scale machine learning models.

ViT-22B should not be used for downstream applications without a prior as-
sessment and mitigation of the safety and fairness concerns specific to the
downstream application. We recommend spending enough time and energy
on mitigation the risk at the downstream application level.

System Type

System Description

| This is a standalone model.

Upstream Dependencies

| None.

Downstream Dependencies | None.

Implementation Frameworks

_Ig:rigxgre & Software: Hardware: TPU v4 (Jouppi et al., 2020). Software: JAX (Bradbury et al., 2018),
Flax (Heek et al., 2020), Scenic (Dehghani et al., 2022).
ll-)hei}r)(lic:vy;?érﬁ Software: Hardware: TPU v4 (Jouppi et al., 2020). Software: Scenic (Dehghani et al.,

2022).

Compute Requirements

| ViT-22B was trained on 1024 TPU V4 chips for 177K steps.




Model Card

Model Characteristics

Model Initialization | The model is trained from a random initialization.
Model Status | This is a static model trained on an offline dataset.
Model Stats | ViT-22B model has 22 billion parameters.
Data Overview
Training Dataset ViT-22B is trained on a version of JFT (Sun et al., 2017), extended to contain

around 4B images (Zhai et al., 2022a). See Section 4.1 for the description of
datasets used to train ViT-22B.

Evaluation Dataset

We evaluate the ViT-22B on a wide variety of tasks and report the results
on each individual tasks and datasets (Dehghani et al., 2021b). Specifically,
we evaluate the models on: ADE20K (Zhou et al., 2017b), Berkeley Adobe
Perceptual Patch Similarity (BAPPS) (Zhang et al., 2018), Birds (Wah et al.,
2011), Caltech101 (Li et al., 2022), Cars (Krause et al., 2013), CelebA (Liu
et al., 2015), Cifar-10 (Krizhevsky et al., 2009), Cifar-100 (Krizhevsky et al.,
2009;, CLEVR/count (Johnson et al., 2017), CLEVR/distance (Johnson et al.,
2017), ColHist (Kather et al., 2016), DMLab (Beattie et al., 2016), dSprites/lo-
cation (Matthey et al., 2017), dSprites/orientation (Matthey et al., 2017),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Flowers102 (Nils-
back and Zisserman, 2008), ImageNet (Deng et al., 2009), Inaturalist (Cui
et al., 2018), ImageNet-v2 (Recht et al., 2019), ImageNet-R (Hendrycks et al.,
2020), ImageNet-A (Hendrycks et al., 2021), ImageNet-C (Hendrycks and
Dietterich, 2019), ImageNet-Real.-H (Tran et al., 2022), Kinetics 400 (Kay et al.,
2017), KITTI (Geiger et al., 2013), Moments in Time (Monfort et al., 2019),
ObjectNet (Barbu et al., 2019), Pascal Context (Mottaghi et al., 2014), Pas-
cal VOC (Everingham et al., 2010), Patch Camelyon (Teh and Taylor, 2019),
Pets (Parkhi et al., 2012), Places365 (Zhou et al., 2017a), Resisc45 (Cheng et al.,
2017), Retinopathy (Kaggle and EyePacs, 2015), SmalINORB/azimuth (LeCun
et al., 2004), SmalINORB/elevation (LeCun et al., 2004), Sun397 (Xiao et al.,
2010), SVHN (Netzer et al., 2011), UC Merced (Yang and Newsam, 2010),

Waymo Open real-world driving dataset (Sun et al., 2020).




Experimental Setup

 After pretraining on JFT, transfer learning results are
done using ViT-22B as a frozen feature extractor.



Image Classification

 Linear evaluation on Imagenet-1K with varying scale.

Model IN  Real INv2 ObjectNet IN-R IN-A
224px linear probe (frozen)

B/32 80.18 86.00 69.56  46.03  75.03 31.2
B/16 84.20 88.79 75.07  56.01 8250 52.67
ALIGN (360px) 85.5 - - - - -

L/16 86.66 90.05 78.57  63.84 89.92 67.96
g/14 88.51 90.50 81.10 68.84 9233 77.51
G/14 88.98 90.60 8132  69.55 9174 78.79
e/14 89.26 90.74 8251  71.54  94.33 81.56
22B 89.51 90.94 83.15 74.30 94.27 83.80
High-res fine-tuning

L/16 88.5 904 804 - - -

FixNoisy-L2 88.5 909 80.8 - - -

ALIGN-L2 88.64 - - - - -

MaxViT-XL 89.53 - - - - -

G/14 90.45 90.81 8333  70.53 - -

e/14 909 911 843 72.0 - -




Out-of-distribution Classification

« Scaling the model increases out-of-distribution
performance in line with the improvements on ImageNet

ObjectNet Accuracy
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Ground truth

Prediction

Dense Prediction Tasks

* The authors investigate transfer learning performance

for dense prediction tasks.

-----------------

(a) Semantic segmentation

Input

Prediction

(b) Depth estimation

a) Semantic segmentation results

Fraction of ADE20k traindata 1/16 1/8 1/4 1/2 1
ViT-L (Touvron et al., 2022) 36.1 413 456 484 519

ViT-G (Zhai et al., 2022a) 424 47.0 502 524 55.6
ViT-22B (Ours) 44.7 472 50.6 525 549
61

Model MSE| AbsRel | < 1.1 <125 < 1.25%
ViT-L 0.027 0121 0594 0.871 0972

E ViT-e 0.024 0.112 0.631 0.888 0.975

ViT-22B  0.021 0.095 0.702 0909 0.979
5 VIiT-L 0.060 0222 0304 0.652 0.926
g ViT-e 0.053 0204 0332 0.687 0.938
= ViT-22B  0.039 0.166 0412 0.779 0.960

b) Depth estimation results



Video Classification

« The authors evaluate the quality of the representations
learned by ViT-22B by adapting the model pretrained on
images for video classification.

Kinetics 400 Moments in Time

Frozen backbone

CoCA* 88.0 47 4
ViT-e 86.5 43.6
ViT-22B 88.0 44.9
Fully finetuned SOTA 91.1 49.0

*Note that CoCA uses pre-pool spatial features and higher spatial reso-
lution for both datasets. More details in Appendix F.



Fairness

» ViT-22B provides more equitable performance
compared to smaller ViT architectures
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shape bias

Alignment with Human Perception

« Evaluating how well ViT-22B classification decisions
align with human perception.
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Distillation

* The authors perform model distillation to compress the
ViT-22B into smaller, more widely usable ViTs.

Model ImageNetlk
o (Dosovitskiy et al., 2021) (JFT ckpt.) 84.2
=) (Zhai et al., 2022a) (JFT ckpt.) 86.6
- (Touvron et al., 2022) (INet21k ckpt.) 86.7
> Distilled from ViT-22B (JFT ckpt.) 88.6
o (Dosovitskiy et al., 2021) (JFT ckpt.) 87.1
,; (Zhai et al., 2022a) (JFT ckpt.) 88.5
E (Touvron et al., 2022) (INet21k ckpt.) 87.7

Distilled from ViT-22B (JFT ckpt.) 89.6




Zero-shot Classification




