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Motivation

e Self-supervised pertaining in NLP:
e Remove a portion of the data and learn to predict the removed content
e This method enables training of generalizable NLP models with >I00B parameters
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Masked autoencoding in vision and language

What makes masked autoencoding different between vision and language?

e Architecture difference:
o CNN operates on regular grids, and it is not straightforward to integrate mask tokens or positional
embeddings into convolutional networks
e Information density:
o Languages are highly semantic and information-dense.
Missing words prediction needs sophisticated language understanding
o Images are natural signals with heavy spatial redundancy.
Masking a very high portion of random patches largely reduces redundancy
Creates a challenging self-supervised task that requires holistic understanding beyond
low-level image statistics.
e Decoder:
o Language: predicts missing words that contain rich semantic information (e.g., in BERT the
decoder is just a MLP)
o Vision: reconstructs pixels, which is of lower semantic level than languages




MAE Architecture

e Encoder:
e Only operates on unmasked patches
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MAE Architecture

e Decoder:
e Encoded visible patches
e Mask token: shared, learned vector with positional embeddings

v

encoder




MAE Architecture

e Reconstruction target:
e To predict the pixel values for each masked patch
e Loss function computes the mean squared error (MSE) between the reconstructed and
original images in the pixel space

v

encoder




Experiments: Baseline

e Baseline
e Uses ViT-L/16 as the backbone for ablation study
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Experiment Results

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.




We hypothesize that this reasoning-like behavior
Is linked to the learning of useful representations
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Figure 5. Masking ratio. A high masking ratio (75%) works well
for both fine-tuning (top) and linear probing (bottom). The y-axes

Figure 4. Reconstructions of ImageNet validation images using are ImageNet-1K validation accuracy (%) in all plots in this paper.
an MAE pre-trained with a masking ratio of 75% but applied on

inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.
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Ablation: Decoder Depth

e A sufficiently deep decoder is important
e The layer several layers of decoder are more specialized for reconstruction, but are less
relevant for recognition.
e A reasonably deep decoder can leave the latent representations at a more abstract level

blocks ft lin
| 84.8 65.5
2 84.9 70.0
4 84.9 71.9
8 84.9 735
12 84.4 133

(a) Decoder depth. A deep decoder can im-
prove linear probing accuracy.




Ablation: Decoder Width

e A sufficiently deep decoder is important
e We use 512-d by default, which performs well under fine-tuning and linear probing

dim ft lin
128 84.9 69.1
256 84.8 71.3
512 84.9 73.5
768 84.4 13.1
1024 84.3 131

(b) Decoder width. The decoder can be nar-
rower than the encoder (1024-d).




Ablation: Mask Token

e If the encoder uses mask tokens, it performs worse
e By skipping the mask token in the encoder, we increase training FLIPs by 3.3X

case ft lin FLOPs

encoder w/ [M] 84.2 596 33X
encoder w/o [M] 849 73.5 1x




Ablation: Data Augmentation

e MAE works well even without data augmentation
e In contrast, using cropping-only augmentation in BYOL and SimCLR reduces accuracy by
13% and 28%

case ft lin

none 84.0 65.7
crop, fixed size 84.7 73.1
crop, rand size 84.9 135
crop + color jit 84.3 71.9

(e) Data augmentation. Our MAE works with
minimal or no augmentation.




Ablation: Training

e The accuracy improves

Epochs

steadily with longer training

e In contrast, MoCo v3 saturates at 300 epochs for ViT-L
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Figure 7. Training schedules. A longer training schedule gives a
noticeable improvement. Here each point is a full training sched-
ule. The model is ViT-L with the default setting in Table 1.




case ratio ft lin

random 3 849 735
block 50 839 723

JEELY * 9 block 75 828 639
random 75% block 50% gd- 1o grid 75 840 66.0

Figure 6. Mask sampling strategies determine the pretext task (f) Mask sampling. Random sampling works
difficulty, influencing reconstruction quality and representations the best. See Figure 6 for visualizations.
(Table 1f). Here each output is from an MAE trained with the spec-

ified masking strategy. Left: random sampling (our default). Mid-

dle: block-wise sampling [2] that removes large random blocks.

Right: grid-wise sampling that keeps one of every four patches.

Images are from the validation set.




Comparison with Self-Supervised Methods

e Scalability: MAE can scale up  method pre-train data ViT-B  ViT-L ViT-H ViT-Husg
eaSily with Steady scratch, our impl. - 823 82.6 83.1
improvement from bigger DINO [5] INIK 828 . . .
models MoCo v3 [9] INIK 832  84.1 ; ;

BEIT [2] INIK+DALLE 83.2 85.2 - -
MAE INIK 83.6 859 8.9 878

UNC-CS

Table 3. Comparisons with previous results on ImageNet-
1K. The pre-training data is the ImageNet-1K training set (ex-
cept the tokenizer in BEiT was pre-trained on 250M DALLE data
[50]). All self-supervised methods are evaluated by end-to-end
fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best
for each column is underlined. All results are on an image size of
224, except for ViT-H with an extra result on 448. Here our MAE
reconstructs normalized pixels and is pre-trained for 1600 epochs.




Comparison with Supervised Methods

e Scalability: MAE follows a trend  ss

similar to the JFT-300M
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Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.




Partial Fine-Tuning

e MoCov3:
o Higher linear probing accuracy
o However, its partial fine-tuning
results are worse than MAE
e MAE:
o Stronger non-linear features and
perform well when a non-linear
head is tuned
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Figure 9. Partial fine-tuning results of ViT-L w.r.t. the number
of fine-tuned Transformer blocks under the default settings from
Table 1. Tuning O blocks is linear probing; 24 is full fine-tuning.
Our MAE representations are less linearly separable, but are con-
sistently better than MoCo v3 if one or more blocks are tuned.




Conclusion

e Images and languages are signals of a different nature
e MAE infers complex, holistic reconstructions, suggesting it has learned good semantics concepts
e This behavior occurs by way of a rich hidden representation inside the MAE




Thanks for your attention!
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