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Motivation and Introduction
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Method

MUSIC Dataset: (Multimodal Sources of Instrument Combinations)

5.5kHz

685 untrimmed videos of
musical solos and dutes

11 instrument categories

average duration: 2 min
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Mix-and-Separate framework for Self-supervised Training

e Input:

o Artificially create audio
mixture (add together)

o two video frames

e Output:
o  two estimated sounds
e Mask(for each T-F unit):

o  binary: whether the
target sound is the
dominant component
in the mixed sound

M, (u,v) = [Sp(u,v) > Sn(u,v)], VYm=(1,..,N),

o ratio:ground truth mask
of a video is calculated
as the ratio of the
magnitudes of the
target sound and the
mixed sound

Sn(u,v)

Mn(u, ’U) = S—(u’u)
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Method: Overview
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Video Analysis Network:
Dilated ResNet

ResNet-18

Video Analysis Network :
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Audio Analysis Network: (Input)
Input audio—STFT—Sound spectrogram
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Audio Analysis Network
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spectrum of frequencies of a recorded audio over time.
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Audio Analysis Network: U-Net ( task
of semantic segmentation)

Encoder-Decoder Fully Convolutional Network

“shrink” the feature map->disgard detail information

Input image Output Mask
3x224* 16x224> 16x224%>  16x224> 1x224* 1x224*
| ; 1x1 conv H sigmoid \
16x112? 32x112? 32x1122 32x1122

—
—p 3%3 convolution
1 T * maxpool

32x56° 64x56 * 2x2 transposed
convolution w/ stride 2

This part extracts relevant This part builds segmentation
features from image mask from features




Audio Analysis Network: U-Net ( task
of semantic segmentation)

Audio Analysis Network

Input audio (S) Audio U-Net

Encoder-Decoder with skip connections (U-Net)

Input image Output Mask
3x224% 16x224> 32x224%  16x224% 1x224% 1x224%
concatenate & 1x1 conv-> sigmoid
e Keep both detail and general
information T
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This part extracts relevant This part builds segmentation
features from image mask from features




Experiments

Sound Separation:

Given two videos and the mixture of the two corresponding audios, separate the audios from the mixture.

Visual Grounding of Sounds:

- Which pixels are making sounds?
- What sounds do these pixels make?
- Is the sound coming from this pixel?




Mixture pair 2
Y 1

Mixture pair 1

Experiments
Video
Sound Separation: i
Given two videos and the mixture of the two corresponding , Mied
pectrogram

audios, separate the audios from the mixture.

NMF |DeepConvSep| Spectral Ratio Mask Binary Mask
[42] [7] Regression |Linear scale|Log scale|Linear scale|Log scale
NSDR/|| 3.14 6.12 5.12 6.67 8.56 6.94 8.87
SIR 6.70 8.38 7.72 12.85 13.75 12.87 15.02
SAR |/10.10 11.02 10.43 13.87 14.19 11.12 12.28

Table 1. Model performances of baselines and different variations of our proposed
model, evaluated in NSDR/SIR/SAR. Binary masking in log frequency scale performs

best in most metrics.
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Experiments

Visual Grounding of Sounds:

Which pixels are making sounds?

What sounds do these pixels make?

Is the sound coming from this pixel?
- Select 256 pixel positions (50% on instruments and Model Yes(%)

50% on background objects) =
- Generate sound from those pixels Spectral Regression| 39.06

- Ask Amazon AMT workers: ‘Yes' if they hear Ratio Mask 54.68
Binary Mask 67.58
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