The Sound of Pixels

Aniruddh Doki, Feihong He, Yue Yang, Ce Zhang

Department of Computer Science, University of North Carolina at Chapel Hill

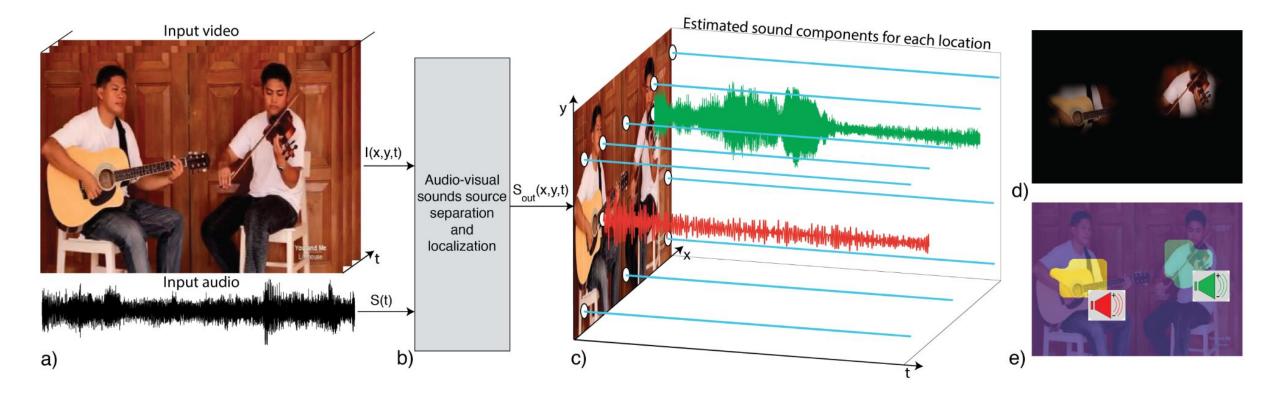
Paper Battle

Oct 11st, 2023

Outlines

- Overview
 - Motivation and Introduction
 - Related work
 - Methods
 - Experiments and results
- Battle Part

Motivation and Introduction

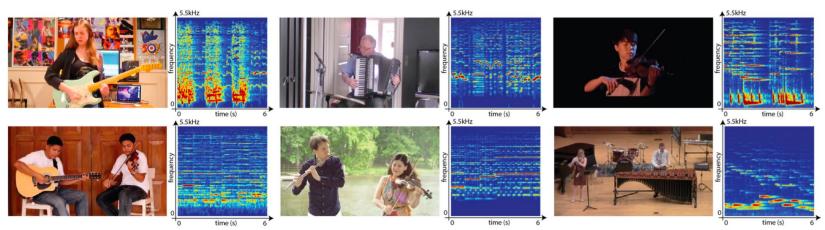


http://sound-of-pixels.csail.mit.edu/

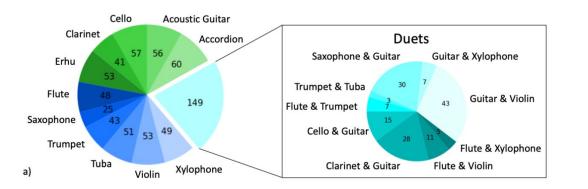
Related works

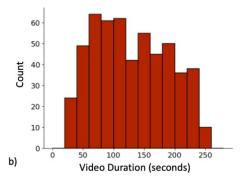
- Well explored
- Complex detection and tracking schemes [1, 2, 3, 4]
- Explicit modeling of motion to sound [5, 6, 7, 8]
- [1]. Vondrick C, Shrivastava A, Fathi A, et al. Tracking emerges by colorizing videos[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 391-408.
- [2]. Wang, DeLiang, and Jitong Chen. "Supervised speech separation based on deep learning: An overview." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 26.10 (2018): 1702-1726.
- [3]. Wang, Xiaolong, and Abhinav Gupta. "Unsupervised learning of visual representations using videos." Proceedings of the IEEE international conference on computer vision. 2015.
- [4]. Zhao, Mingmin, et al. "Through-wall human pose estimation using radio signals." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- [5]. Ma, Wei-Chiu, et al. "Single image intrinsic decomposition without a single intrinsic image." Proceedings of the European conference on computer vision (ECCV). 2018.
- [6]. Haykin, Simon, and Zhe Chen. "The cocktail party problem." Neural computation 17.9 (2005): 1875-1902.
- [7]. Mesaros, Annamaria, et al. "DCASE 2017 challenge setup: Tasks, datasets and baseline system." DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and Events. 2017.
 [8]. Nagrani, Arsha, Samuel Albanie, and Andrew Zisserman. "Seeing voices and hearing faces: Cross-modal biometric matching." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

Method MUSIC Dataset: (Multimodal Sources of Instrument Combinations)



- 685 untrimmed videos of musical solos and dutes
- 11 instrument categories
- average duration: 2 min





Mix-and-Separate framework for Self-supervised Training

- Input:
 - Artificially create audio mixture (add together)
 - two video frames
- Output:

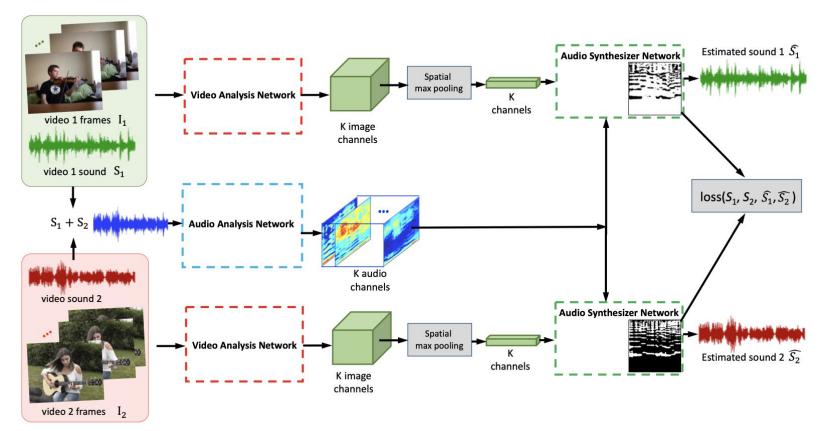
UNC-CS

- two estimated sounds
- Mask(for each T-F unit):
 - binary: whether the target sound is the dominant component in the mixed sound

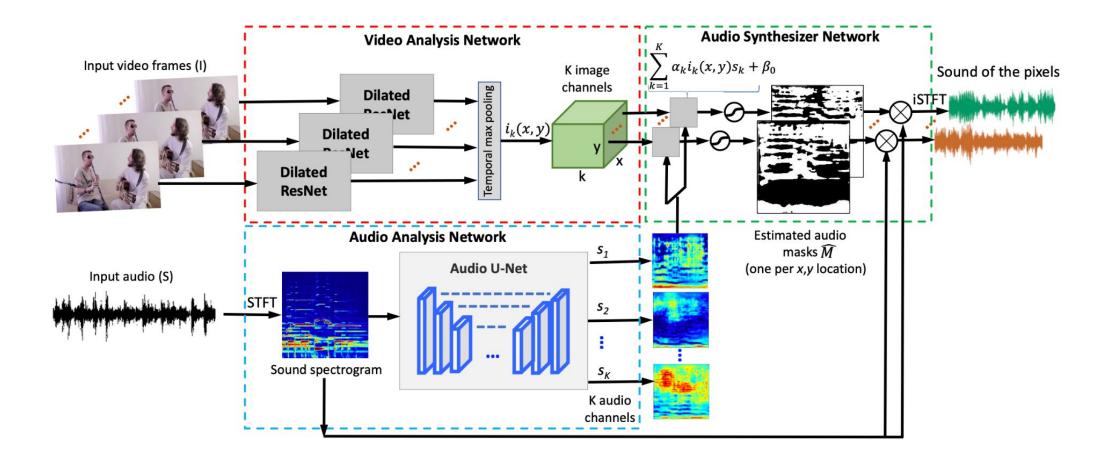
$$M_n(u,v) = [\![S_n(u,v) \ge S_m(u,v)]\!], \quad \forall m = (1,...,N),$$

 ratio:ground truth mask of a video is calculated as the ratio of the magnitudes of the target sound and the mixed sound

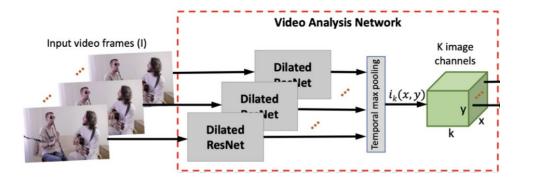
$$M_n(u,v) = rac{S_n(u,v)}{S_{mix}(u,v)}.$$



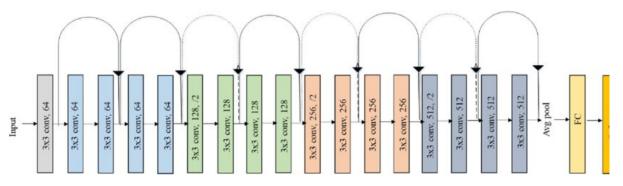
Method: Overview



Video Analysis Network: Dilated ResNet

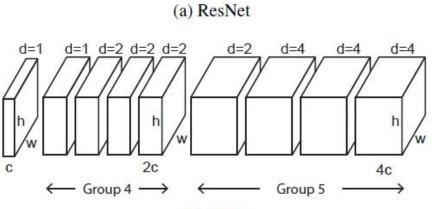


ResNet-18



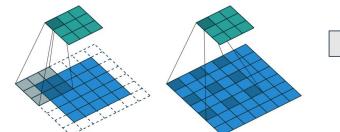
d=1

 $\begin{array}{c} d=1 \ d=1 \$



(b) DRN

• output: k image channels

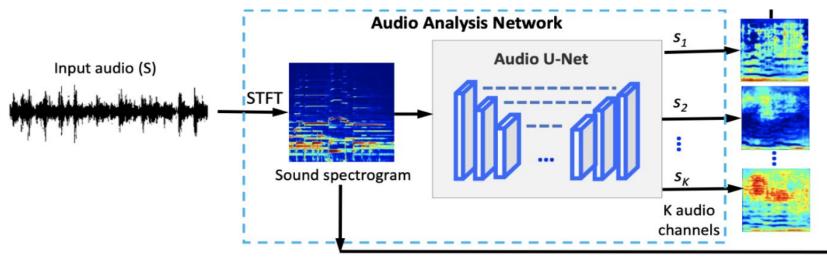


What is dilated?

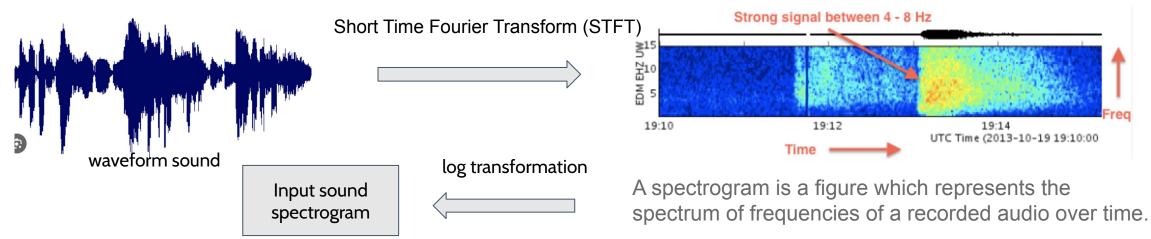
Standard Convolution (I=1) (Left) Dilated Convolution (I=2) (Right)

more modification will be in experiment part~

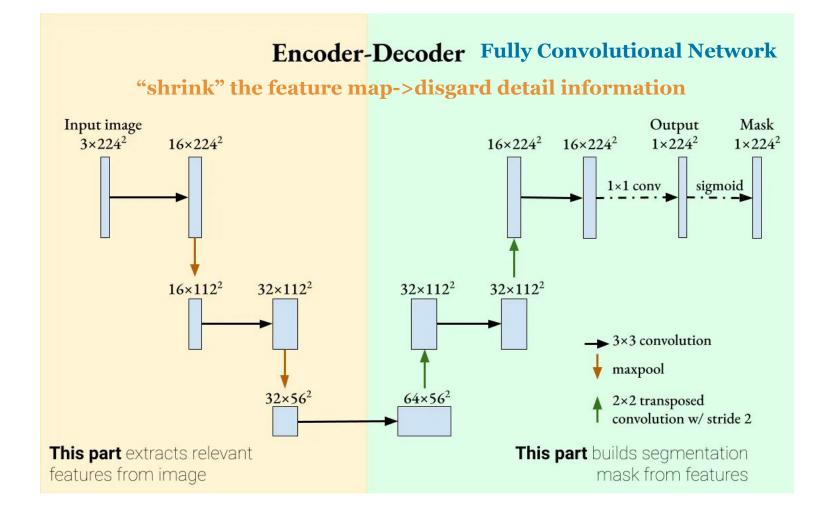
Audio Analysis Network: (Input) Input audio–STFT→Sound spectrogram



512 × 256 Time-Frequency (T-F) representation of the sound

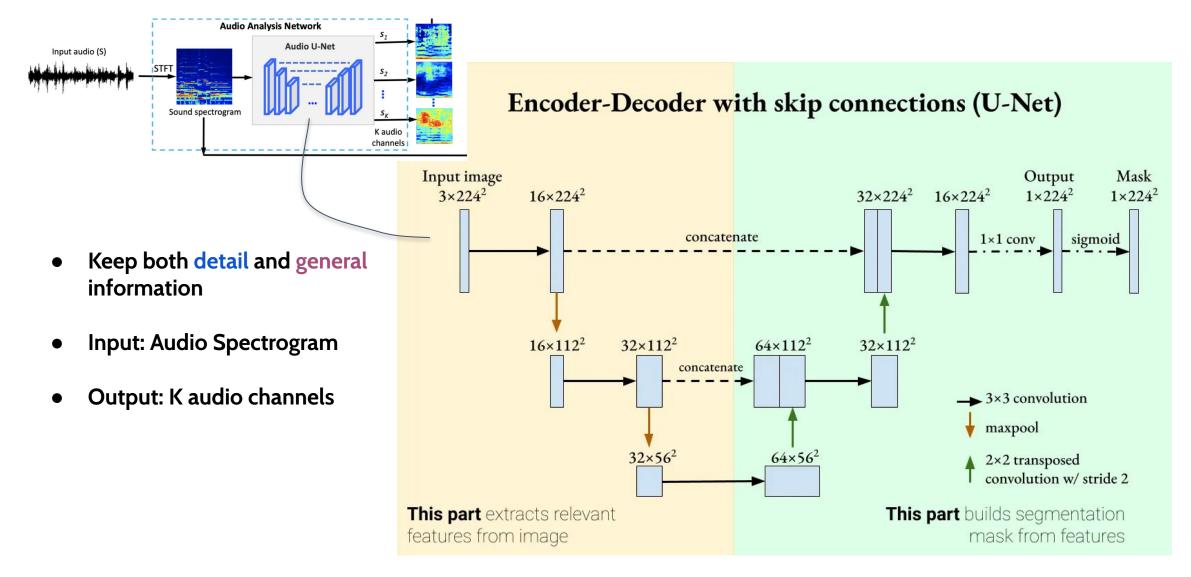


Audio Analysis Network: U-Net (task of semantic segmentation)



Audio Analysis Network: U-Net (task of semantic segmentation)

UNC-CS



12

Experiments

Sound Separation:

Given two videos and the mixture of the two corresponding audios, separate the audios from the mixture.

Visual Grounding of Sounds:

- Which pixels are making sounds?
- What sounds do these pixels make?
- Is the sound coming from this pixel?

Experiments

Sound Separation:

Given two videos and the mixture of the two corresponding audios, separate the audios from the mixture.

	NMF	DeepConvSep	Spectral	Ratio Mask		Binary Mask	
	[42]	[7]	Regression	Linear scale	Log scale	Linear scale	Log scale
NSDR	3.14	6.12	5.12	6.67	8.56	6.94	8.87
SIR	6.70	8.38	7.72	12.85	13.75	12.87	15.02
SAR	10.10	11.02	10.43	13.87	14.19	11.12	12.28

Table 1. Model performances of baselines and different variations of our proposed model, evaluated in NSDR/SIR/SAR. Binary masking in log frequency scale performs best in most metrics.

Mixture pair 1 Mixture pair 2 Video Frames Mixed Spectrogram Ground truth Mask Predicted Mask Ground truth Spectrogram Predicted Spectrogram

Experiments

Visual Grounding of Sounds:

Which pixels are making sounds?

What sounds do these pixels make?

Is the sound coming from this pixel?

- Select 256 pixel positions (50% on instruments and 50% on background objects)
- Generate sound from those pixels
- Ask Amazon AMT workers: 'Yes' if they hear

Model	$\mathbf{Yes}(\%)$
Spectral Regression	39.06
Ratio Mask	54.68
Binary Mask	67.58

Thank you!

