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Motivation

Single, multi-task 
backbone model

● Generalization 
○ Zero-shot 

generalization
● Performance

○ Inference Time

Courtesy of: 
https://blog.research.google/2022/12/rt-1-robotics-transformer-for-real.html 

https://blog.research.google/2022/12/rt-1-robotics-transformer-for-real.html


Key Components
● Robot Learning
● Imitation Learning
● Correct scope of training data

○ Scale
○ Breadth

● High capacity, real-time inference
○ Image Tokenization
○ Action Tokenization
○ Token Compression

Courtesy of: https://community.libretranslate.com/t/rt-1-robotics-transformer/441 

https://community.libretranslate.com/t/rt-1-robotics-transformer/441


Architecture

● FiLM Conditioned EfficentNet
● TokenLearner
● Transformer



Architecture: FiLM Conditioned EfficientNet  
● Input: 6 images, 300×300  

resolution
● Fuse image and instruction into 

tokens
○ Pretrained on ImageNet

● Output: 9×9×512 spatial feature 
map

FiLM EfficientNet → TokenLearner → Transformer



Architecture: TokenLearner 
● Input: 9 x 9 x 512 Spatial Map

= 81 visual tokens

● Element-wise attention model compresses tokens
● Output: 8 visual tokens per image

FiLM EfficientNet → TokenLearner → Transformer



Architecture: TokenLearner 

Courtesy of https://blog.research.google/2021/12/improving-vision-transformer-efficiency.html 

FiLM EfficientNet → TokenLearner → Transformer

https://blog.research.google/2021/12/improving-vision-transformer-efficiency.html


Architecture: Transformer

● Input: 8 tokens per-image x 6 images = 48 total tokens 
○ Added position encoding
○ Fed into the Transformer

● Transformer is a decoder-only sequence model 
○ 8 self-attention layers
○ 19M total parameters

● Output: Action tokens

FiLM EfficientNet → TokenLearner → Transformer



Action Tokens

● 7 variables for arm movement 
○ x, y, z, roll, pitch, yaw, gripper opening

● 3 variables for base movement 
○ x, y, yaw

● Extra variable to switch between three modes: 
○ controlling arm
○ controlling base
○ terminating the episode

● Each action dimension is discretized into 256 bins
○ 11 variables x 256 bins



Other Architectural Components

● Loss function:
○ Standard categorical cross-entropy entropy objective

■ Classification
○ Causal masking 

■ Predictions conditioned on preceding elements

● Inference Speed Limitations:
○ Human speeds of 2-4 seconds
○ 100ms inference time
○ At least 3Hz control frequency (rate)



Model Ablations

● Justifies current 
architectural 
choices



Data
● Our primary dataset consists of ~130k robot demonstrations, collected with a 

fleet of 13 robots over the course of 17 months
● Definitions of Instructions and skills

○   Instruction(aka tasks): a verb surrounded by one or multiple nouns
■ Eg. “place water bottle upright”

○ Skill: instructions grouped by the verbs



Data Ablations

● Success impacted more 
by data diversity than 
data size



Experiments — Experiment Setup

● Equipment: 
○ Mobile manipulators from Everyday Robot

● Environments: 
○ Two real office kitchens
○ A training environment modelled off these real kitchens



Experiments — Experiment Setup

● Evaluate Performance on Seen instructions
○ Evaluate performance on instructions sampled from the training set

■ Still involves varying the placement of objects and other factors of the setup 
(e.g., time of day, robot position)

○ Test over 200 tasks in this evaluation in all 
■ 36 for picking
■ 35 for knocking objects
■ 35 for placing things upright
■ 48 for moving objects
■ 18 for opening and closing various drawers
■ 36 for picking out of and placing objects into drawers



Experiments — Experiment Setup

● Evaluate generalization to unseen tasks
○ Test 53 novel, unseen instructions
○ Instructions are distributed across skills and objects
○ Eg. if “pick up the apple” is held out, then there are other training instructions that 

include the apple.
● Evaluate robustness

○ Perform 30 real-world tasks for distractor robustness
○ Perform 22 tasks for background robustness

● Evaluate generalization long-horizon scenarios
○ Require executing a sequence of skills
○ New tasks, objects, environments
○ Eg. “Bring me two different sodas”



Results — CAN RT-1 LEARN TO PERFORM A LARGE 
NUMBER OF INSTRUCTIONS, AND TO GENERALIZE 
TO NEW TASKS, OBJECTS AND ENVIRONMENTS?



Results —  Generalization to realistic instructions

● L1 for generalization to the new counter-top layout and lighting conditions
● L2 for additionally generalization to unseen distractor objects
● L3 for additionally generalization to drastically new task settings, new task 

objects or in unseen locations like near a sink.



Results —  Generalization to realistic instructions



Results —  CAN WE PUSH THE RESULTING MODEL 
FURTHER BY INCORPORATING HETEROGENEOUS
DATA SOURCES?



Results — CAN WE PUSH THE RESULTING MODEL 
FURTHER BY INCORPORATING HETEROGENEOUS
DATA FROM DIFFERENT ROBOTS?



Results — CAN WE PUSH THE RESULTING MODEL 
FURTHER BY INCORPORATING HETEROGENEOUS
DATA FROM DIFFERENT ROBOTS?



Results — HOW DO VARIOUS METHODS GENERALIZE 
LONG-HORIZON ROBOTIC SCENARIOS



Limitations

● Unable to surpass the performance of the demonstrators

● Unable to generalize to a completely new motion that has not been seen 
before

● Presented on a large but not very dexterous set of manipulation tasks.



Discussion

● Single, multi-task backbone model
● Showed improvements in generalization

○ Unseen tasks, distractors, backgrounds
● Future goals:

○ Faster scaling of robot skills
○ Improve performance on backgrounds
○ New motions


