RT-1: ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT SCALE

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, Brianna Zitkovich

Presented by: Nathan Holmes, Pan Lu

Motivation

Single, multi-task backbone model

- Generalization
 - Zero-shot generalization
- Performance
 - Inference Time

Courtesy of: <u>https://blog.research.google/2022/12/rt-1-robotics-transformer-for-real.html</u>

Key Components

- Robot Learning
- Imitation Learning
- Correct scope of training data
 - Scale
 - Breadth
- High capacity, real-time inference
 - Image Tokenization
 - Action Tokenization
 - Token Compression

Courtesy of: https://community.libretranslate.com/t/rt-1-robotics-transformer/441

Architecture

- FiLM Conditioned EfficentNet
- TokenLearner
- Transformer

Architecture: FiLM Conditioned EfficientNet

- <u>Input:</u> 6 images, 300×300 resolution
- Fuse image and instruction into tokens
 - Pretrained on ImageNet
- <u>Output:</u> 9×9×512 spatial feature map

Architecture: TokenLearner

• Input: 9 x 9 x 512 Spatial Map

= 81 visual tokens

- Element-wise attention model compresses tokens
- Output: 8 visual tokens per image

FiLM EfficientNet \rightarrow TokenLearner \rightarrow Transformer

Architecture: TokenLearner

Courtesy of https://blog.research.google/2021/12/improving-vision-transformer-efficiency.html

Architecture: Transformer

- <u>Input:</u> 8 tokens per-image x 6 images = 48 total tokens
 - Added position encoding
 - Fed into the Transformer
- Transformer is a **decoder-only sequence model**
 - 8 self-attention layers
 - 19M total parameters
- <u>Output:</u> Action tokens

Action Tokens

- 7 variables for arm movement
 - x, y, z, roll, pitch, yaw, gripper opening
- 3 variables for base movement
 - o x, y, yaw
- Extra variable to switch between three modes:
 - controlling arm
 - controlling base
 - terminating the episode
- Each action dimension is discretized into 256 bins
 - 11 variables x 256 bins

Other Architectural Components

- Loss function:
 - Standard categorical cross-entropy entropy objective
 - Classification
 - Causal masking
 - Predictions conditioned on preceding elements

- Inference Speed Limitations:
 - Human speeds of 2-4 seconds
 - 100ms inference time
 - At least 3Hz control frequency (rate)

Model Ablations

 Justifies current architectural choices

				Distr	actors		Backgrounds	1
Model	Seen Tasks	Unseen Tasks	All	Easy	Medium	Hard	All	Inference Time (ms)
Gato (Reed et al., 2022)	65 (-32)	52 (-24)	43 (-40)	71	44	29	35 (-24)	129
BC-Z (Jang et al., 2021)	72 (-25)	19 (-57)	47 (-36)	100	67	7	41 (-18)	5.3
BC-Z XL	56 (-41)	43 (-33)	23 (-60)	57	33	0	35 (-24)	5.9
RT-1 (ours)	97	76	83	100	100	64	59	15
RT-1 w/o big model	89 (-8)	62 (-14)	77 (-6)	100	100	50	53 (-6)	13.5
RT-1 w/o pre-training	84 (-13)	43 (-33)	60 (-23)	100	67	36	41 (-18)	15
RT-1 w/ continuous actions	68 (-29)	43 (-33)	37 (-46)	71	67	0	35 (-24)	16
RT-1 w/ auto-regressive actions	85 (-12)	71 (-5)	67 (-16)	100	78	43	65 (+6)	36
RT-1 w/o history	82 (-15)	62 (-14)	50 (-33)	71	89	14	59 (+0)	15
RT-1 w/o Transformer	86 (-13)	62 (-14)	67 (-16)	100	100	29	59 (+0)	26

Data

Skill

Total

Pick Object

Open Drawer

Close Drawer

Move Object Near Object

Place Object into Receptacle 84

Pick Object from Receptacle 162

Place Object Upright

and Place on the Counter

Section 6.3 and 6.4 tasks

Knock Object Over

 Our primary dataset consists of ~130k robot demonstrations, collected with a fleet of 13 robots over the course of 17 months

Example Instruction

place water bottle upright

knock redbull can over

close the middle drawer

bowl and place on counter

open the top drawer

grab scooper

Pick an object up from a location and then pick green jalapeno chip bag from paper

move pepsi can near rxbar blueberry

place brown chip bag into white bowl

open the large glass jar of pistachios pull napkin out of dispenser

pick iced tea can

• Definitions of Instructions and skills

Count

130

337

8

8

3

3

9

744

- Instruction(aka tasks): a verb surrounded by one or multiple
 - Eg. "place water bottle upright"
- Skill: instructions grouped by the verbs

Lift the object off the surface

Move the first object near the second

Place an elongated object upright

Knock an elongated object over

Open any of the cabinet drawers

Close any of the cabinet drawers

Place an object into a receptacle

place it on the counter

Description

(e)

Table 1: The list of skills collected for RT-1 together with their descriptions and example instructions.

Skills trained for realistic, long instructions

Data Ablations

 Success impacted more by data diversity than data size

						Generalization					
Models	% Tasks	% Data	Seen Tasks		s A	.11	Unseen Tasks	Distractors	Backgrounds		
Smaller Data											
RT-1 (ours)	100	100		97	7	3	76	83	59		
RT-1	100	51		71	5	0	52	39	59		
RT-1	100	37		55	4	6	57	35	47		
RT-1	100	22		59	2	9	14	31	41		
Narrower Data											
RT-1 (ours)	100	100		97	7	3	76	83	59		
RT-1	75	97		86	5	4	67	42	53		

Experiments — Experiment Setup

- Equipment:
 - Mobile manipulators from Everyday Robot
- Environments:
 - Two real office kitchens
 - A training environment modelled off these real kitchens

Experiments — Experiment Setup

- Evaluate Performance on Seen instructions
 - Evaluate performance on instructions sampled from the training set
 - Still involves varying the placement of objects and other factors of the setup (e.g., time of day, robot position)
 - Test over 200 tasks in this evaluation in all
 - 36 for picking
 - 35 for knocking objects
 - 35 for placing things upright
 - 48 for moving objects
 - 18 for opening and closing various drawers
 - 36 for picking out of and placing objects into drawers

Experiments — Experiment Setup

- Evaluate generalization to unseen tasks
 - Test 53 novel, unseen instructions
 - Instructions are distributed across skills and objects
 - Eg. if "pick up the apple" is held out, then there are other training instructions that include the apple.
- Evaluate robustness
 - Perform 30 real-world tasks for distractor robustness
 - Perform 22 tasks for background robustness
- Evaluate generalization long-horizon scenarios
 - Require executing a sequence of skills
 - New tasks, objects, environments
 - Eg. "Bring me two different sodas"

Results — CAN RT-1 LEARN TO PERFORM A LARGE NUMBER OF INSTRUCTIONS, AND TO GENERALIZE TO NEW TASKS, OBJECTS AND ENVIRONMENTS?

Model	Seen Tasks	Unseen Tasks	Distractors	Backgrounds	
Gato (Reed et al., 2022)	65	52	43	35	Rate
BC-Z (Jang et al., 2021)	72	19	47	41	ss
BC-Z XL	56	43	23	35	ce
RT-1 (ours)	97	76	83	59	Suc

Results — Generalization to realistic instructions

- L1 for generalization to the new counter-top layout and lighting conditions
- L2 for additionally generalization to unseen distractor objects
- L3 for additionally generalization to drastically new task settings, new task objects or in unseen locations like near a sink.

Results — Generalization to realistic instructions

		Generaliz	Generalization Scenario Level			
Models	All	L1	L2	L3		
Gato Reed et al. (2022)	30	63	25	0		
BC-Z Jang et al. (2021)	45	38	50	50		
BC-Z XL	55	63	75	38		
RT-1 (ours)	70	88	75	50		

Results — CAN WE PUSH THE RESULTING MODEL FURTHER BY INCORPORATING HETEROGENEOUS DATA SOURCES?

		Real Objects	Sim Objects (not seen in r	
Models	Training Data	Seen Skill w/ Objects	Seen Skill w/ Objects	Unseen Skill w/ Objects
RT-1 RT-1	Real Only Real + Sim	92 90(-2)	23 87(+64)	7 33(+26)

Results — CAN WE PUSH THE RESULTING MODEL FURTHER BY INCORPORATING HETEROGENEOUS DATA FROM DIFFERENT ROBOTS?

Figure 6: In Table 5, RT-1 is trained with data from two robotics platforms and learns to generalize across them.

Results — CAN WE PUSH THE RESULTING MODEL FURTHER BY INCORPORATING HETEROGENEOUS DATA FROM DIFFERENT ROBOTS?

Models	Training Data	Classroom eval	Bin-picking eval
RT-1	Kuka bin-picking data + EDR data	90(-2)	39(+17)
RT-1	EDR only data	92	22
RT-1	Kuka bin-picking only data	0	0

Results — HOW DO VARIOUS METHODS GENERALIZE LONG-HORIZON ROBOTIC SCENARIOS

	SayCan tas	sks in Kitchen1	SayCan tasks in Kitchen2	
	Planning	Execution	Planning	Execution
Original SayCan (Ahn et al., 2022)*	73	47	-	-
SayCan w/ Gato (Reed et al., 2022)	87	33	87	0
SayCan w/ BC-Z (Jang et al., 2021)	87	53	87	13
SayCan w/ RT-1 (ours)	87	67	87	67

Table 6: SayCan style long horizon tasks in Kitchen1 and Kitchen2. (*Original SayCan eval uses a slightly different prompt so the planning success rate is lower.)

Limitations

• Unable to surpass the performance of the demonstrators

• Unable to generalize to a completely new motion that has not been seen before

• Presented on a large but not very dexterous set of manipulation tasks.

Discussion

- Single, multi-task backbone model
- Showed improvements in generalization
 - Unseen tasks, distractors, backgrounds
- Future goals:
 - Faster scaling of robot skills
 - Improve performance on backgrounds
 - New motions