A ConvNet for the 2020s

Authors: Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie

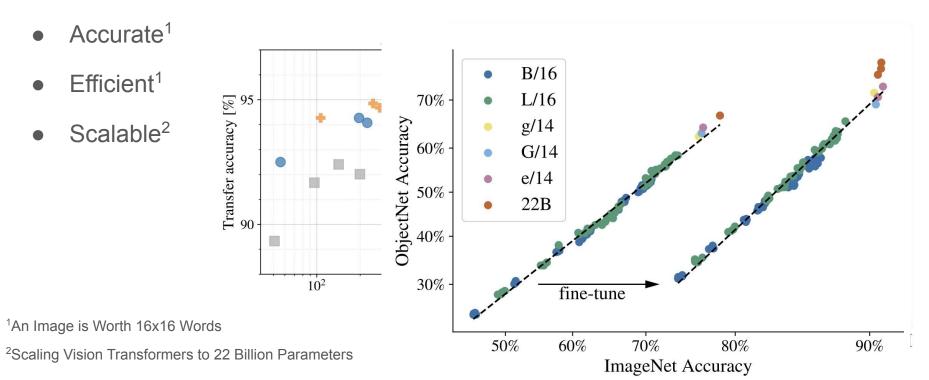
Facebook AI Research (FAIR)

Submitted: Jan 10, 2022; Last Revised: March 2, 2022

Presented By: Alex Georgiev and David Zhang

Recap

Compared to CNNs, transformers are widely considered to be more:



Motivation

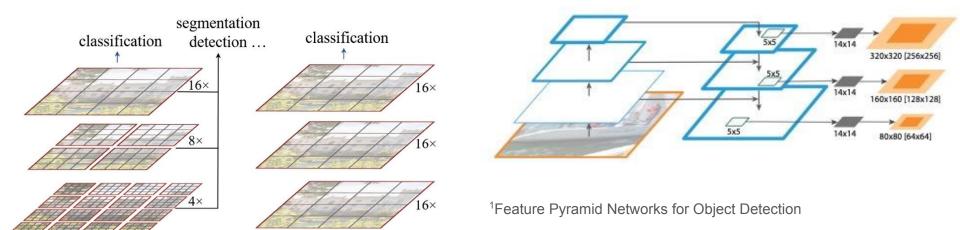
- Prior work has attempted to **reintroduce inductive biases** to transformers
- Techniques that are applied to transformers can also be applied to CNNs
 - Training recipes
 - Layer layouts
 - Studied individually but not collectively
- Provide an architecture that can serve as a **general backbone** for image classification, object detection and segmentation
- Scale a CNN while keeping its computational overhead lower than a ViT

Hierarchical Learning

• Aggregating hierarchical feature maps captures coarse and fine-grained features, and makes the model more robust to scale

Swin Transformer

Feature Pyramid Network¹ (CNN)



(b) ViT

(a) Swin Transformer (ours)

CNNs vs ViTs

CNN advantages

- Simple design
- Better on higher resolution inputs
- Inductive bias
- Easier to train
- Easier to apply quantization

Disadvantages:

• Struggles to capture global dependencies

Vision transformer advantages

- More scalable
- Higher accuracy
- Captures global dependencies

Disadvantages:

 Global attention has a quadratic complexity w.r.t. input size → intractable for higher resolution images

CNNs vs ViTs

CNN advantages

- Simple design
- Better on higher resolution inputs
- Inductive bias
- Easier to train
- Easier to apply quantization

Disadvantages:

 Struggles to capture global dependencies

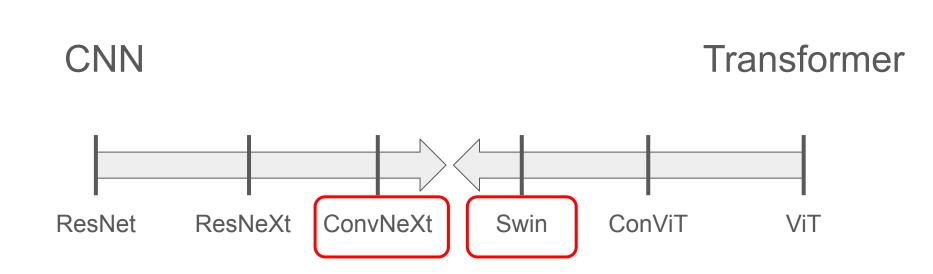
Vision transformer advantages

- More scalable
- Higher accuracy
- Captures global dependencies

Disadvantages:

 Global attention has a quadratic complexity w.r.t. input size → intractable for higher resolution images

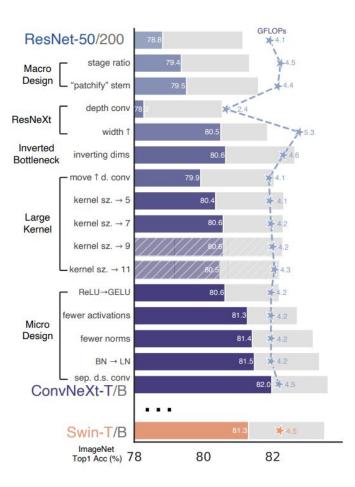
Convergence of Architectures over Time



Methods

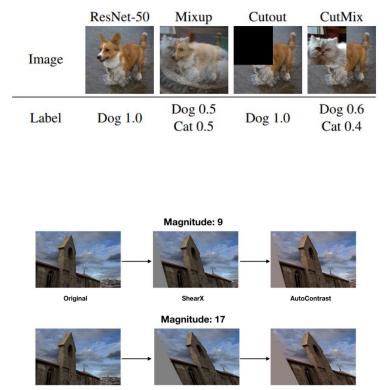
Roadmap

- ResNet \rightarrow ConvNeXt
- Follow designs of Swin Transformer
 - While maintaining the simplicity of ConvNet



Training Techniques

- Baseline with the vision Transformer training procedure:
 - \circ 90 \rightarrow 300 epochs
 - AdamW optimizer
 - Mixup, Cutmix, RandAugment, Random Erasing
 - Stochastic Depth, Label Smoothing



Original

AutoContrast

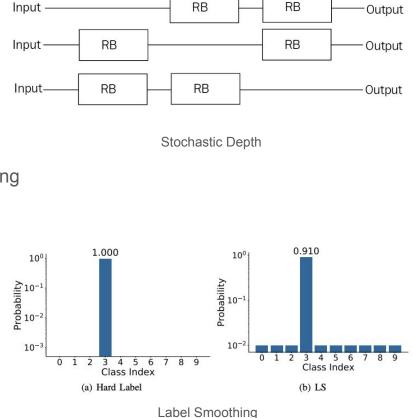
RandAugment

ShearX

Training Techniques

- Baseline with the vision Transformer training procedure:
 - \circ 90 \rightarrow 300 epochs
 - AdamW optimizer
 - Mixup, Cutmix, RandAugment, Random Erasing
 - Stochastic Depth, Label Smoothing

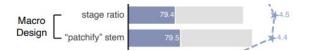




Macro Design

- Stage compute ratio \rightarrow 1:1:3:1
- Stem: 4x4, stride 4 convolution

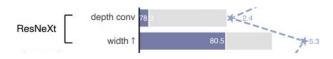
• Simpler

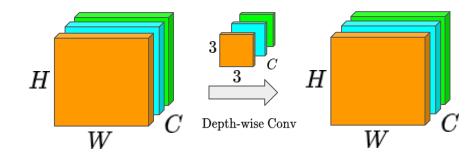


	output size	• ResNet-50	 ConvNeXt-T 	• Swin-T		
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4		
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96\\ 1 \times 1, 384\\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, H=3, rel. pos. \\ 1 \times 1, 96 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix}$		
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, rel. pos. \\ 1 \times 1, 192 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix}$		
res4	14×14	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 384 \times 3 \\ MSA, w7 \times 7, H=12, rel. pos. \\ 1 \times 1, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 6$		
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 768 \times 3 \\ MSA, w7 \times 7, H=24, rel. pos. \\ 1 \times 1, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 2$		
FLOPs		4.1×10^{9}	4.5×10^9	4.5×10^{9}		
# params.		$25.6 imes 10^6$	$28.6 imes 10^6$	28.3×10^{6}		

ResNeXt-ify

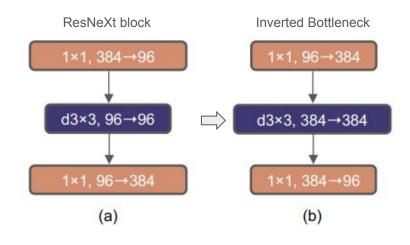
- ResNeXt better FLOPs/accuracy trade-off
 - Depth convolution
 - Followed by 1x1 convolution
 - \circ #Channel 64 \rightarrow 96
- Separation of spatial and channel mixing
 - Similar to vision Transformers





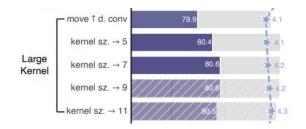
Inverted Bottleneck

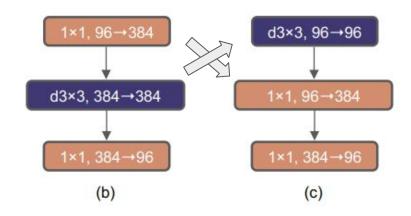
- Transformer block
 - Hidden dimension of the MLP block is four times wider than the input dimension
- FLOPs decreases due to smaller dimension in residual connection



Large Kernel Sizes

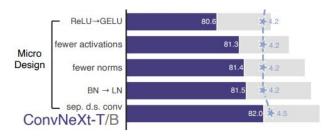
- Moving up depthwise conv layer
 - Similar to Transformer blocks
 - Reduce FLOPs
- Increase kernel sizes
 - Optimal at 7 x 7
 - Same as Swin Transformer

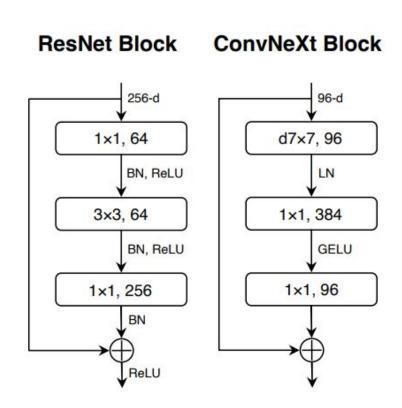




Micro Design

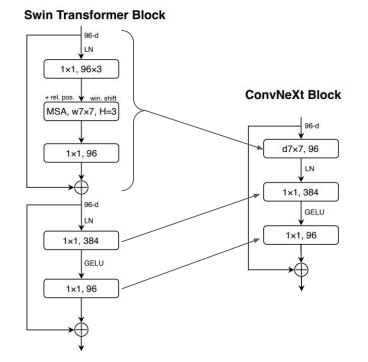
- ReLU \rightarrow GELU
- A single GELU activation in each block
- A single BN in each block
- $BN \rightarrow LN$
- Separate downsampling layers
 - 2 x 2 conv, stride 2

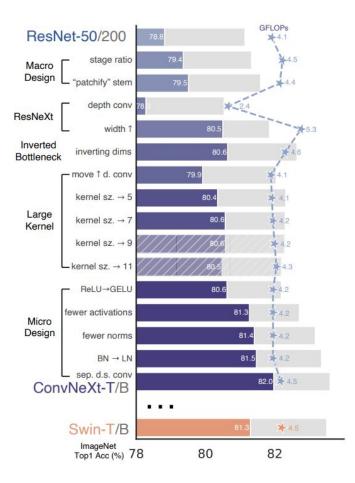




ConvNeXt

• ConvNeXt v.s. Swin Transformer





Results

Image Classification

model	image	#param.		throughput	IN-1K
model	size	#param.	FLOFS	(image / s)	top-1 acc.
	ImageN	let-1K train	ed models		
• RegNetY-16G [54]	224^{2}	84M	16.0G	334.7	82.9
• EffNet-B7 [71]	600^{2}	66M	37.0G	55.1	84.3
• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	85.7
• DeiT-S [73]	224^{2}	22M	4.6G	978.5	79.8
• DeiT-B [73]	224^{2}	87M	17.6G	302.1	81.8
• Swin-T	224^{2}	28M	4.5G	757.9	81.3
 ConvNeXt-T 	224^{2}	29M	4.5G	774.7	82.1
o Swin-S	224^{2}	50M	8.7G	436.7	83.0
 ConvNeXt-S 	224^{2}	50M	8.7G	447.1	83.1
• Swin-B	224^{2}	88M	15.4G	286.6	83.5
 ConvNeXt-B 	224^{2}	89M	15.4G	292.1	83.8
• Swin-B	384^{2}	88M	47.1G	85.1	84.5
 ConvNeXt-B 	384^{2}	89M	45.0G	95.7	85.1
 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	84.3
• ConvNeXt-L	384^{2}	198M	101.0G	50.4	85.5

model	image size	#param.	FLOPs	throughput (image / s) t	IN-1K
In		-22K pre-tr	ained mod		op i dee.
• R-101x3 [39]	384 ²	388M	204.6G		84.4
• R-152x4 [39]	480^{2}	937M	840.5G	-	85.4
• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	86.8
• EffNetV2-XL [72]	480^{2}	208M	94.0G	56.5	87.3
o ViT-B/16 (☎) [67]	384^{2}	87M	55.5G	93.1	85.4
o ViT-L/16 (☎) [67]	384^{2}	305M	191.1G	28.5	86.8
• ConvNeXt-T	224^{2}	29M	4.5G	774.7	82.9
 ConvNeXt-T 	384^{2}	29M	13.1G	282.8	84.1
• ConvNeXt-S	224^{2}	50M	8.7G	447.1	84.6
• ConvNeXt-S	384^{2}	50M	25.5G	163.5	85.8
• Swin-B	224^{2}	88M	15.4G	286.6	85.2
• ConvNeXt-B	224^{2}	89M	15.4G	292.1	85.8
o Swin-B	384 ²	88M	47.0G	85.1	86.4
• ConvNeXt-B	384^{2}	89M	45.1G	95.7	86.8
• Swin-L	224 ²	197M	34.5G	145.0	86.3
• ConvNeXt-L	224^{2}	198M	34.4G	146.8	86.6
o Swin-L	384^{2}	197M	103.9G	46.0	87.3
• ConvNeXt-L	384^{2}	198M	101.0G	50.4	87.5
 ConvNeXt-XL 	224^{2}	350M	60.9G	89.3	87.0
 ConvNeXt-XL 	384^{2}	350M	179.0G	30.2	87.8

Object Detection

backbone	FLOPs	FPS	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	AP ^{mask}	AP ₅₀ ^{mask}	AP_{75}^{mask}
Mask-RCNN 3× schedule								
o Swin-T	267G	23.1	46.0	68.1	50.3	41.6	65.1	44.9
 ConvNeXt-T 	262G	25.6	46.2	67.9	50.8	41.7	65.0	44.9
	Cas	cade N	/lask-RC	$CNN 3 \times$	schedu	le		
 ResNet-50 	739G	16.2	46.3	64.3	50.5	40.1	61.7	43.4
• X101-32	819G	13.8	48.1	66.5	52.4	41.6	63.9	45.2
• X101-64	972G	12.6	48.3	66.4	52.3	41.7	64.0	45.1
o Swin-T	745G	12.2	50.4	69.2	54.7	43.7	66.6	47.3
 ConvNeXt-T 	741G	13.5	50.4	69.1	54.8	43.7	66.5	47.3
o Swin-S	838G	11.4	51.9	70.7	56.3	45.0	68.2	48.8
 ConvNeXt-S 	827G	12.0	51.9	70.8	56.5	45.0	68.4	49.1
o Swin-B	982G	10.7	51.9	70.5	56.4	45.0	68.1	48.9
 ConvNeXt-B 	964G	11.4	52.7	71.3	57.2	45.6	68.9	49.5
∘ Swin-B [‡]	982G	10.7	53.0	71.8	57.5	45.8	69.4	49.7
 ConvNeXt-B[‡] 	964G	11.5	54.0	73.1	58.8	46.9	70.6	51.3
• Swin-L [‡]	1382G	9.2	53.9	72.4	58.8	46.7	70.1	50.8
 ConvNeXt-L[‡] 	1354G	10.0	54.8	73.8	59.8	47.6	71.3	51.7
• ConvNeXt-XL [‡]	1898G	8.6	55.2	74.2	59.9	47.7	71.6	52.2

Semantic Segmentation

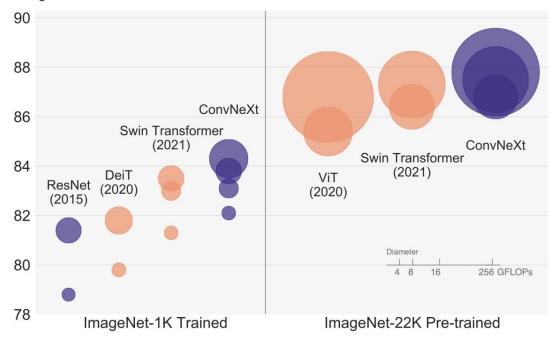
backbone	input crop.	mIoU	#param.	FLOPs
	re-trained			
o Swin-T	512^{2}	45.8	60M	945G
 ConvNeXt-T 	512^{2}	46.7	60M	939G
o Swin-S	512^{2}	49.5	81M	1038G
 ConvNeXt-S 	512^{2}	49.6	82M	1027G
• Swin-B	512^{2}	49.7	121M	1188G
 ConvNeXt-B 	512^{2}	49.9	122M	1170G
Image	eNet-22K pre-tra	ined		
○ Swin-B [‡]	640^{2}	51.7	121M	1841G
• ConvNeXt-B [‡]	640^{2}	53.1	122M	1828G
o Swin-L [‡]	640^{2}	53.5	234M	2468G
• ConvNeXt-L [‡]	640^{2}	53.7	235M	2458G
• ConvNeXt-XL [‡]	640^{2}	54.0	391M	3335G

Computational Comparison with ViT

model	#param.	FI OP	throughput	training	IN-1K
model	#param.	I'LOI'S	(image / s)	mem. (GB)	acc.
o ViT-S	22M	4.6G	978.5	4.9	79.8
• ConvNeXt-S (iso.)	22M	4.3G	1038.7	4.2	79.7
o ViT-B	87M	17.6G	302.1	9.1	81.8
• ConvNeXt-B (iso.)	87M	16.9G	320.1	7.7	82.0
o ViT-L	304M	61.6G	93.1	22.5	82.6
• ConvNeXt-L (iso.)	306M	59.7G	94.4	20.4	82.6

Scalability

ImageNet-1K Acc.



What could a ViT be potentially better for?

- Multi-modal learning (attention can be applied across modalities)
- More flexible for tasks that require discretized, sparse, or structured outputs
- Capturing temporal dependencies

Takeaways

- A CNN can still achieve the same scalability as a ViT
- ConvNeXt matched the performance of transformer models yet had a lower computational overhead
 - Easier to train because it uses less GPU memory
- CNNs are still relevant for computer vision tasks