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Motivation

e Going beyond ViTs — what’s next that can scale up really well with large data/compute?
e Self-attention in ViTs are of quadratic complexity, which limits scalability. Can we do better?

e s self-attention the only means of global information processing in images, or did we miss
something simpler?

The solution lies in... well, the full cycle completion of computer vision: back to MLPs!




In a nutshell...

No convolutions, no self-attention. Just feature mixing,

pure MLP-based! / you need?

e No fancy computations/equations; Simple tensor reshapes,
multiplications and non-linearity ViTs are all

) L . ) you need
e (Quadratic self-attention is replaced by linear complexity

token+channel mixing modules

® Achieves surprisingly competitive results against SOTA \

ViT/CNNs, and shows great scalability properties! Attention is

all you need

MLPs — are all

CNNs are all
you need
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MLP-Mixer:
Proposed Architecture




High-level architecture
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e Similar processing as ViTs — BUT, mixer layers instead of self-attention
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e Standard classification head: Global average pooling layer + Linear classifier




Types of MLP layers

Channel-mixing MLPs

e Each image token has C channels
e Allows communication between different channels
e Operate on tokens independently

Token-mixing MLPs

® Allows communication between tokens
e Operates on channels independently




Token-mixing MLP

Patches
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® “Cross location” operation

o  Performed by CNNs (N x N convolutions for N > 1) and larger kernels and transformers
° X € RSXC is the given input, where S is the number of image patches, and C is
the number of channels. This MLP is applied on the columns of X (i.e. applied to X
transpose)




Channel-mixing MLP

Layer Norm

e Applied across all token features independently
e Same MLP layer, shared parameters across all token features

® Aggregates channel information across all tokens




Mixer layer
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U, = X,; + Wy0(W;LayerNorm(X)..;), fori=1...C, i an elementwise
Y;.="U;.+ Wy0(WsLayerNorm(U);,), forj=1...85. nonlinearity (GELU)
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® The same channel-mixing MLP and the same token-mixing MLP is applied.
o  Using parameters across channels is not common.
o0  Leads to significant memory savings, and doesn’t affect performance!

e No position embeddings; token-mixing MLPs are sensitive to ordering
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Experimental Setup

Downstream task: Image classification

° Datasets:

o JFT-300M, ImageNet-21k (pre-training), ImageNet-1k (pre-training + evaluation)
o CIFAR-10/100, Oxford-IIIT Pets (37 classes), Oxford-Flowers (102 classes), Visual Task Adaptation Benchmark (VTAB)

e Metrics:
o Top-1 accuracy
o TPUv3-core-days (pre-training time)
o  Throughput (images/sec/core)

e Model variants:
o  Scale variants similar to ViTs - Small (5/32), Base (B/32, B/16), Large (L/32, L/16), Huge (H/14)

e Competitors:
o Vanilla ViT with its scale variants
o ResNet-based BiT




Empirical Results: Transfer Learning

Mixer achieves top-1 acc. ImNet RealL Avg5 VTAB-lk Throughput TPUv3
competitive to SOTA top-1  top-1  top-1 19 tasks ~ img/sec/core  core-days
o Pre-trained on ImageNet-21k (public)
® Gapreduceswithincrease o) Net[51] 858  — — 120 0.10k
in pre-training data (IN-21k [OMixer-L/16 84.15 87.86 93.91 74.95] 105 0.41k
— JFT-300M) o ViT-L/16 [14] 85.30 88.62 94.39 72.72 32 0.18k
BiT-R152x4 [22] 85.39 — 94.04 70.64 26 0.94k
e  Throughput of Mixer is Pre-trained on JFT-300M (proprietary)
way superior w.r.t. ViTs or NFENet-F4+ [7] 892  — — 46 1.86k
CNNs (i.e. BiT) b Mixer-H/14 87.94 90.18 9571  75.33) 1.01k
BiT-R152x4 [22] 87.54 90.54 95.33 76.29 26 9.90k
Mixer yields superior accuracy vs ViT-H/14 [14] 88.55 90.72  95.97 77.6?] 2.30k
throughput tradeoff. Pre-trained on unlabelled or weakly labelled data (proprietary)
MPL [34] 90.0 91.12 — — — 20.48k
ALIGN [21] 88.64 — — 79.99 15 14.82k




Effect of Model Scaling
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Both ViTs and Mixer scale well w.r.t. compute budget, and lead over CNNs (Left figure)
For given top-1 accuracy, Mixer (and ViTs) have higher throughput w.r.t. CNN

For given model size, Mixer has higher throughput vs. ViT (albeit lower top-1 acc. score)
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Effect of Compute Scaling

e Points on Pareto frontier (dashed line) depicts there cannot
be a change iny (or x) without incurring a change in x (or y)
i.e. indicates a trade-off

e Both Mixer and ViT points follow the Pareto frontier,
depicting the compute-vs-performance trade-off

e Sort of assurance that with higher compute scaling, Mixers
would yield better performances

ImageNet transfer accuracy [%]
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CNN fares better than Mixer/ViT at low
data regimes

CNN quickly saturates with increased
training data; ViTs and Mixer scale better

Smaller variants (Mixer-B, ViT-B) saturate
out quicker than larger variants

Very high scaling of training data = larger
variants (L/16, L/32) of Mixer converges
to / outperforms ViTs

Effect of Scaling Pre-training Data
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Empirical Results: Scaling MLP-Mixers

Summary of scaling evaluations of Mixers w.r.t. CNNs/ViTs — (a) model sizes (Base, Large, Huge), (b) pretraining
scales (IN-1k, IN-21k, JFT-300M), (c) input resolutions (224, 448)

e  Mixers consistently show better throughput, scales better than ViTs (both model size and training data) and
achieves competitive performance to SOTA.
Image Pre-Train ImNet Real. Avg.5 Throughput TPUvV3
size Epochs top-1  top-1  top-1 (img/sec/core) core-days
Pre-trained on JFT-300M
. © Mixer-S/32 224 5 6870 7583 87.13 11489 )  0.01k
Image Pre-Train ImNet Real. Avg.5 Throughput —TPUV3 © Mixer-B/32 224 7 75.53 8194  90.99 4208 0.05k
size. BEpochs  top-1 top-1  top-1 (img/sec/core) core-days o Mixer-S/16 224 5 73.83  80.60  89.50 3994 0.03k
Pre-trained on ImageNet (with extra regularization) BiT-R50x1 224 7 7369 81.92 - 2159 0.08k
* Mixer-B/16 224 7 80.00 8556 92.60 1384 0.08k
* Mixer-B/16 224 300 76.44| 8236 8833 1384 0.01k® o Mixer-L/32 224 7 80.67 85.62 9324 1314 0.2
o VIT-B/16 (m) 224 300 79.67| 84.97 90.79 861 0.02k® BiT-R152x1 224 7 79.12 8612  — 932 0.14k
("o Mixer-L/16 224 300 71.76] 77.08 8725 419 ) 0.04k® gg—gfgﬁz %%: 1471 gggi gg-gg — ggg g-;gllz
. €)) iT- X : . — ;
(eVITL/16(m) 224 300 |76.11] 8093 89.66 280 | 005k “MixerL/l6 224 7 8405 88.14 9451 419 023k
Pre-trained on ImageNet-21k (with extra regularization) ® Mixer-L/16 224 14 84.82 88.48 94.77 419 0.45k
; ) ® ViT-L/16 224 14 85.63  89.16 9521 280 ) 0.65k
eMixecB/l6, 224 300 18064 85.80 92.50 1384 | 0.3 oMixerH/14 224 14 8632 89.14 9549 194 101k
o VIL-B/16 (®) 224 300 84.59| 88.93 94.16 861 0.18k™® BIT.R200x3 224 14 8473 8958  — 141 178Kk
(® Mixer-L/16 224 300 82.89 87.54 93.63 419 | 041k® o Mixer-L/16 448 14 8678 89.72 95.13 105 0.45k
(e VIT-L/16 (m) 224 300 84.46) 88.35 94.49 280 | 0.55k® [ o ViT-H/14 224 14 86.65 89.56 9557 87 ] 230k
© Mixer-L/16 448 300 8391 8775 93.86 105 0.41k® e VITL/16[14] 512 14 87.76  90.54  95.63 32 0.65k




Inductive Biases: Mixer vs. CNNs

e  Mixer is invariant to the order of patches and pixels within the patches (original = patch+pixel shuffling)
e For global shuffling: Performance drop for Mixer (45%) is less compared to CNN (75%)

Patch + pixel shuffling
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Feature Visualisations

e While early CNN layers learn local spatial features, token-mixing MLPs allow global feature learning.

e Some Mixer-learned features (even early blocks) operate at global level, others at local regions. Deeper layers
have no identifiable structure.
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Summing up...

Key takeaways:

yield competitive performances on image classification benchmarks?

An all-MLP architecture is a lot simpler than CNN/ViT, but shows very competitive performance to these
SOTA models

Token-mixing MLPs learns global features while being of linear complexity — more efficient vs. quadratic
complexity of self-attention in ViTs

Mixer shows high scalability w.r.t. training data, compute and model capacity — better scaling vs. ViTs

Shows superior throughput compared to ViTs at a nominal performance expenses, esp. at high capacities

[Question] Does this imply that any network, no matter how simple, with sufficiently high compute + data + capacity, can




Summing up...




Thank you!

Questions?




