# ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases

Sabiq Muhtadi, Charlie Arleth and Cheng Che Tsai (Michael)

| <b>Convolutional Neural Networks</b>                                |
|---------------------------------------------------------------------|
| Universal solution to CV tasks                                      |
| Characterized by hard-coded inductive biases:                       |
| <ul> <li>Locality</li> </ul>                                        |
| <ul> <li>Weight sharing</li> </ul>                                  |
| Both sample efficient and parameter efficient                       |
| <ul> <li>High performance floor, low performance ceiling</li> </ul> |

| <b>Convolutional Neural Networks</b>                                | Vision Transformers                                                 |
|---------------------------------------------------------------------|---------------------------------------------------------------------|
| Universal solution to CV tasks                                      | Leverage self-attention (SA) to capture long range                  |
| Characterized by hard-coded inductive biases:                       | dependencies within the input.                                      |
| <ul> <li>Locality</li> </ul>                                        | Performs SA across embeddings of patches of pixels.                 |
| <ul> <li>Weight sharing</li> </ul>                                  | Matches or exceeds performance of CNN's                             |
| Both sample efficient and parameter efficient                       | <ul> <li>Requires pre-training on vast amounts of data</li> </ul>   |
| <ul> <li>High performance floor, low performance ceiling</li> </ul> | <ul> <li>High performance ceiling, low performance floor</li> </ul> |
|                                                                     |                                                                     |

| <b>Convolutional Neural Networks</b>                                                                                                                                                                                                                                                                | Vision Transformers                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Universal solution to CV tasks</li> <li>Characterized by hard-coded inductive biases:         <ul> <li>Locality</li> <li>Weight sharing</li> </ul> </li> <li>Both sample efficient and parameter efficient         <ul> <li>High performance floor, low performance</li> </ul> </li> </ul> | <ul> <li>Leverage self-attention (SA) to capture long range dependencies within the input.</li> <li>Performs SA across embeddings of patches of pixels.</li> <li>Matches or exceeds performance of CNN's         <ul> <li>Requires pre-training on vast amounts of data</li> </ul> </li> </ul> |
| ceiling                                                                                                                                                                                                                                                                                             | High performance ceiling, low performance floor                                                                                                                                                                                                                                                |

How can one get the best of both worlds?

**Solution:** 'softly' introduce convolutional inductive bias into the ViT, by letting each SA layer **decide** whether to behave as a convolutional layer or not.

**Solution:** 'softly' introduce convolutional inductive bias into the ViT, by letting each SA layer **decide** whether to behave as a convolutional layer or not.



Gated Positional Self-Attention

**Solution:** 'softly' introduce convolutional inductive bias into the ViT, by letting each SA layer **decide** whether to behave as a convolutional layer or not.



ConViT

Gated Positional Self-Attention

SA:  

$$A = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{D_h}}\right) \in \mathbb{R}^{L_1 \times L_2}$$

## SA: $A = \operatorname{softmax} \left( \frac{QK^{\top}}{\sqrt{D_h}} \right) \in \mathbb{R}^{L_1 \times L_2}$

#### PSA:

 $A_{ij}^h \coloneqq \operatorname{softmax} \left( Q_i^h K_j^{h\top} + v_{pos}^{h\top} r_{ij} \right)$ 

## SA: $A = \operatorname{softmax} \left( \frac{QK^{\top}}{\sqrt{D_h}} \right) \in \mathbb{R}^{L_1 \times L_2}$ PSA: $A_{ij}^h := \operatorname{softmax} \left( Q_i^h K_j^{h\top} + v_{pos}^{h\top} r_{ij} \right)$ $\begin{cases} v_{pos}^h := -\alpha^h \left( 1, -2\Delta_1^h, -2\Delta_2^h, 0, \dots 0 \right) \\ r_{\delta} := \left( \|\delta\|^2, \delta_1, \delta_2, 0, \dots 0 \right) \\ W_{qry} = W_{key} := 0, \quad W_{val} := I \end{cases}$

For a PSA layer with  $N_{h}$  heads,

- $\rightarrow$   $\Delta_h$  is the position which attention head h pays most attention to relative to the query patch.
- $\rightarrow \alpha_h^{"}$  determines how focused the attention is around the query patch.



(d) Convolutional initialization, strength  $\alpha=2$ 

Figure 3. Positional self-attention layers can be initialized as convolutional layers. (a): Input image from ImageNet, where the query patch is highlighted by a red box. (b),(c),(d): attention maps of an untrained SA layer (b) and those of a PSA layer using the convolutional-like initialization scheme of Eq. 5 with two different values of the locality strength parameter,  $\alpha$  (c, d). Note that the shapes of the image can easily be distinguished in (b), but not in (c) or (d), when the attention is purely positional.

#### Modify PSA layer to Gated Positional Self Attention (GPSA):

• Restrict attention to subset of patches around query patch – adaptive attention span

#### Modify PSA layer to Gated Positional Self Attention (GPSA):

- Restrict attention to subset of patches around query patch adaptive attention span
- Sum content and positional terms after softmax, with their relative importance governed by a learnable gating parameter  $\lambda_{h}$

$$\begin{aligned} A_{ij}^h \coloneqq \operatorname{softmax} \left( Q_i^h K_j^{h\top} + v_{pos}^{h\top} r_{ij} \right) &\longrightarrow A_{ij}^h \coloneqq \underbrace{\left( 1 - \sigma(\lambda_h) \right) \operatorname{softmax} \left( Q_i^h K_j^{h\top} \right)}_{+ \overline{\sigma(\lambda_h) \operatorname{softmax} \left( v_{pos}^{h\top} r_{ij} \right)}, \end{aligned}$$

#### Modify PSA layer to Gated Positional Self Attention (GPSA):

- Restrict attention to subset of patches around query patch adaptive attention span
- Sum content and positional terms after softmax, with their relative importance governed by a learnable gating parameter  $\lambda_{h}$

$$\begin{aligned} \boldsymbol{A}_{ij}^{h} \coloneqq \operatorname{softmax}\left(\boldsymbol{Q}_{i}^{h}\boldsymbol{K}_{j}^{h\top} + \boldsymbol{v}_{pos}^{h\top}\boldsymbol{r}_{ij}\right) & \longrightarrow \boldsymbol{A}_{ij}^{h} \coloneqq \left(1 - \sigma(\lambda_{h})\right) \operatorname{softmax}\left(\boldsymbol{Q}_{i}^{h}\boldsymbol{K}_{j}^{h\top}\right) \\ & + \overline{\sigma(\lambda_{h})\operatorname{softmax}\left(\boldsymbol{v}_{pos}^{h\top}\boldsymbol{r}_{ij}\right)}, \end{aligned}$$

• Normalize summation

 $\mathsf{GPSA}_h(X) := \operatorname{normalize} \left[ A^h \right] X W^h_{val}$ 

ConViT in comparison to ViT:

- Same as ViT, except in first 10 blocks SA layers are replaced by GPSA.
- Since GPSA layers involve positional attention, it is not suitable to insert the class token as in regular ViT. The class token is thus appended to the patches after the last GPSA layer.

## Training details and Performance Comparison between ViT (DeiT) and ConViT

## Training details

## Distillation

ConViT is based on DeiT, which was chosen for its training efficiency

Several models were built with different number of attention heads to mimic the size of the convolutional filters

All hyperparameters were unchanged from DeiT to ensure performance boost was due to convolution not other factors

| Name | Mode1  | $N_h$ | $D_{\rm emb}$ | Size | Flops | Speed | Top-1 | Top-5       |
|------|--------|-------|---------------|------|-------|-------|-------|-------------|
| T:   | DeiT   | 3     | 192           | 6M   | 1G    | 1442  | 72.2  | -           |
| 11   | ConViT | 4     | 192           | 6M   | 1G    | 734   | 73.1  | 91.7        |
| Tit  | DeiT   | 4     | 256           | 10M  | 2G    | 1036  | 75.9  | 93.2        |
| 11+  | ConViT | 4     | 256           | 10M  | 2G    | 625   | 76.7  | 93.6        |
| C    | DeiT   | 6     | 384           | 22M  | 4.3G  | 587   | 79.8  | 10 <u>1</u> |
| 3    | ConViT | 9     | 432           | 27M  | 5.4G  | 305   | 81.3  | 95.7        |
| S.   | DeiT   | 9     | 576           | 48M  | 10G   | 480   | 79.0  | 94.4        |
| JT.  | ConViT | 9     | 576           | 48M  | 10G   | 382   | 82.2  | 95.9        |
| D    | DeiT   | 12    | 768           | 86M  | 17G   | 187   | 81.8  | -           |
| D    | ConViT | 16    | 768           | 86M  | 17G   | 141   | 82.4  | 95.9        |
| D    | DeiT   | 16    | 1024          | 152M | 30G   | 114   | 77.5  | 93.5        |
| D+   | ConViT | 16    | 1024          | 152M | 30G   | 96    | 82.5  | 95.9        |

ConViT consistently outperforms DeiT (model it was based on) on any amount of parameters and flops.

## Distillation

ConViT is compatible with ResMLP distillation with no additional modifications. It can be distilled without being passed through a pre-trained Convolutional network.



Figure 1: The ResMLP architecture: After linearly projecting the image patches, our network alternately processes them by (1) a communication layer between vectors implemented as a linear layer; (2) a two-layer residual perceptron. We denote by A the Affine element-wise transformation, and by T the transposition.

With distillation ConViT S+ can reach 82.9% top-1 accuracy

## Sample efficiency

| Train |      | Top-1  |     | Top-5 |        |     |  |
|-------|------|--------|-----|-------|--------|-----|--|
| size  | DeiT | ConViT | Gap | DeiT  | ConViT | Gap |  |
| 5%    | 34.8 | 47.8   | 37% | 57.8  | 70.7   | 22% |  |
| 10%   | 48.0 | 59.6   | 24% | 71.5  | 80.3   | 12% |  |
| 30%   | 66.1 | 73.7   | 12% | 86.0  | 90.7   | 5%  |  |
| 50%   | 74.6 | 78.2   | 5%  | 91.8  | 93.8   | 2%  |  |
| 100%  | 79.9 | 81.4   | 2%  | 95.0  | 95.8   | 1%  |  |

ConViT doesn't suffer as much from

decreased training size.

## Investigating the role of locality

## Quantitative definition of `non-locality`



### Average through multi-head attention



## Investigating non-locality of ViT learned from CNN



The ViT structure, built without convolution, is encouraged to learn locality in early layers.

GPSA is still encouraged to learn locality without CNN bias



## Investigate the gating parameter



## Strong locality is desirable



## **Brief summary**

- 1. Locality is desirable for providing better accuracy.
- 2. Attention-based structure (ViT) can still learn locality.
- 3. ConViT learns locality flexibly and effectively, via GPSA.

## Ablation

| Ref.       | Train<br>gating | Conv<br>init | Train<br>GPSA | Use<br>GPSA           | Full<br>data | 10%<br>data |
|------------|-----------------|--------------|---------------|-----------------------|--------------|-------------|
| a (ConViT) | 1               | 1            | 1             | <ul> <li>✓</li> </ul> | 82.2         | 59.7        |
| b          | X               | $\checkmark$ | 1             | 1                     | 82.0         | 57.4        |
| С          | $\checkmark$    | X            | 1             | 1                     | 81.4         | 56.9        |
| d          | X               | X            | 1             | 1                     | 81.6         | 54.6        |
| e (DeiT)   | ×               | ×            | ×             | ×                     | 79.1         | 47.8        |
| f          | X               | 1            | X             | 1                     | 78.6         | 54.3        |
| g          | ×               | ×            | ×             | $\checkmark$          | 73.7         | 44.8        |

## Maybe Conv init. is even important than the gating?

| Ref.            | Train<br>gating | Conv<br>init | Train<br>GPSA | Use<br>GPSA | Full<br>data        | 10%<br>data         |
|-----------------|-----------------|--------------|---------------|-------------|---------------------|---------------------|
| a (ConViT)<br>b | ×               | 1            | 1             |             | <b>82.2</b><br>82.0 | <b>59.7</b><br>57.4 |
| С               | $\checkmark$    | X            | 1             | 1           | 81.4                | 56.9                |
| d               | ×               | ×            | 1             | 1           | 81.6                | 54.6                |
| e (DeiT)        | ×               | X            | X             | X           | 79.1                | 47.8                |
| f               | ×               | $\checkmark$ | X             | 1           | 78.6                | 54.3                |
| g               | ×               | ×            | ×             | 1           | 73.7                | 44.8                |