VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text

Hassan Akbari, Wei-Hong Chuang, Liangzhe Yuan, Shih-Fu Chang, Boqing Gong, Rui Qian, and Yin Cui NeurIPS 2021

Presented by Luchao Qi & Myles Mason

Goal:

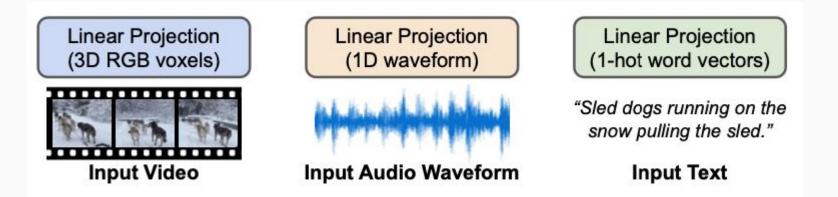
Develop a structure for learning multimodal representations from **unlabeled data** with a convolution free transformer architecture **from scratch**

Why raw signals?

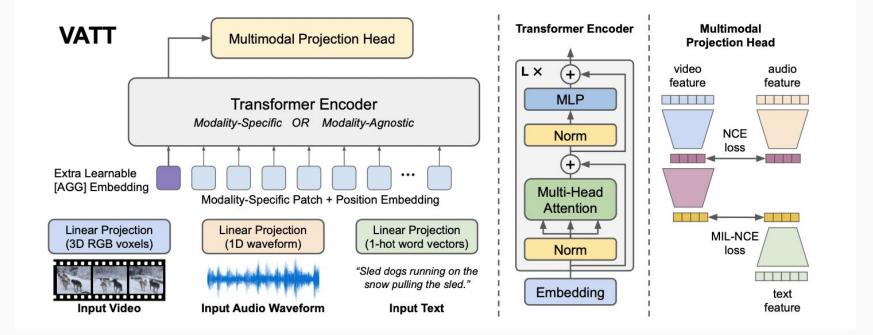
- Transformers are labeled-data hungry
- High costs for labeled data acquisition
 - Remember the paper battle back to Monday Large noisy data vs. clean small data?

Can we extract all information from a video clip?

• Given an input video, audio waveform, or text we want to extract high level feature information as the aggregated representation of the whole input.



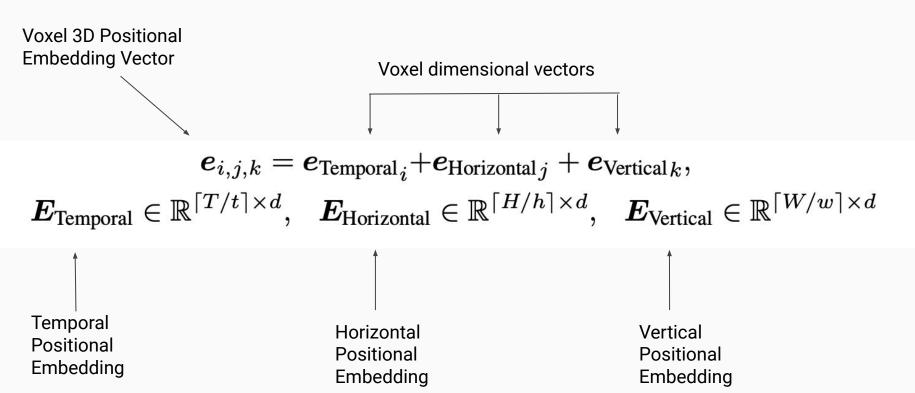
Yes we can, introducing VATT



Modality-agnostic - the idea is to test whether there exists a single, general-purpose model for all the modalities

Tokenization and Positional Encoding: Video

$$oldsymbol{W}_{vp} \in \mathbb{R}^{t \cdot h \cdot w \cdot 3 imes d} oldsymbol{W}_{ap} \in \mathbb{R}^{t' imes d} oldsymbol{W}_{tp} \in \mathbb{R}^{v imes d}$$



Redundancies information in different modalities (audio/video)

Since the Transformer's computational complexity is quadratic $O(N^2)$ where N is the number of tokens in the input sequence.

- Sample a portion of the tokens and then feed the sampled sequence, not the complete set of tokens, to the transformer

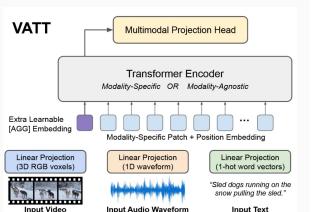
Common space projection - misalignment for noisy multi-modality data

Cross-modality regularization

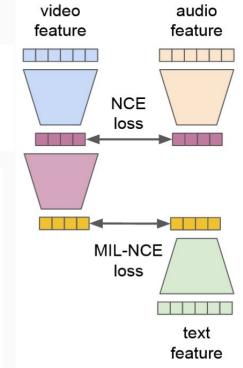
$$\begin{aligned} \boldsymbol{z}_{v,va} &= g_{v \to va}(\boldsymbol{z}_{\text{out}}^{\text{video}}), \\ \boldsymbol{z}_{t,vt} &= g_{t \to vt}(\boldsymbol{z}_{\text{out}}^{\text{text}}), \end{aligned}$$

 $m{z}_{a,va} = g_{a
ightarrow va}(m{z}_{ ext{out}}^{ ext{audio}})$ $m{z}_{v,vt} = g_{v
ightarrow vt}(m{z}_{v,va})$

 such comparison is more feasible if we assume there are different levels of semantic granularity for different modalities



Multimodal Projection Head



Multiple Instance Learning Noise Contrastive Estimation

 First proposed from paper presented on Monday: End-to-End Learning of Visual Representations

$$\mathcal{L} = \text{NCE}(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) + \lambda \text{MIL-NCE}(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\})$$
Video-audio pairs
Video-text pairs
$$\text{NCE}(\boldsymbol{z}_{v,va}, \boldsymbol{z}_{a,va}) = -\log\left(\frac{\exp(\boldsymbol{z}_{v,va}^{\top}\boldsymbol{z}_{a,va}/\tau)}{\exp(\boldsymbol{z}_{v,va}^{\top}\boldsymbol{z}_{a,va}/\tau) + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z}_{v,vt}^{\top}\boldsymbol{z}_{v,vt}/\tau)}\right), \quad (4)$$
MIL-NCE $(\boldsymbol{z}_{v,vt}, \{\boldsymbol{z}_{t,vt}\}) = -\log\left(\frac{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top}\boldsymbol{z}_{t,vt}/\tau)}{\sum_{\boldsymbol{z}_{t,vt} \in \mathcal{P}} \exp(\boldsymbol{z}_{v,vt}^{\top}\boldsymbol{z}_{t,vt}/\tau) + \sum_{z' \in \mathcal{N}} \exp(\boldsymbol{z}_{v,vt}^{\top}\boldsymbol{z}_{t,vt}/\tau)}\right), \quad (5)$

- Downstream on four tasks
 - Video action recognition
 - Audio event classsification
 - Text-to video retrieval
 - Image classification
- Pretraining on AudioSet and HowTo100M
 - video-audio pairs from AudioSet
 - video-audio-text triplets from HowTo100M
- Finetuning on other datasets OR zero-shot depending on the downstreaming task

Fine-tune VATT's vision Transformer on Kinetics-400, Kinetics-600, and Moments in Time

modality-agnostic backbone (VATT-MA-Medium)

Model	Layers	Hidden Size	MLP Size	Heads	Params
Small	6	512	2048	8	20.9 M
Base	12	768	3072	12	87.9 M
Medium	12	1024	4096	16	155.0 M
Large	24	1024	4096	16	306.1 M

Table 7: Details of the Transformer architectures in VATT.

	Kinetics-400		Kinetics-600		Moments in Time			
Method	TOP-1	TOP-5	TOP-1	TOP-5	TOP-1	TOP-5	TFLOPS	
I3D [13]	71.1	89.3	71.9	90.1	29.5	56.1	-	
R(2+1)D [26]	72.0	90.0	-	-	-	-	17.5	
bLVNet [27]	73.5	91.2	-	-	31.4	59.3	0.84	
S3D-G [96]	74.7	93.4	-	-	-	-	-	
Oct-I3D+NL [20]	75.7	-	76.0	-	-	-	0.84	
D3D [83]	75.9	-	77.9	-	-	-	-	
I3D+NL [93]	77.7	93.3	-	-	-	-	10.8	
ip-CSN-152 [87]	77.8	92.8	-	-	-	-	3.3	
AttentionNAS [92]	-	-	79.8	94.4	32.5	60.3	1.0	
AssembleNet-101 [77]	-	-	-	-	34.3	62.7	-	
MoViNet-A5 [47]	78.2	-	82.7	-	39.1	-	0.29	
LGD-3D-101 [69]	79.4	94.4	81.5	95.6	-	-	-	
SlowFast-R101-NL [30]	79.8	93.9	81.8	95.1	-	-	7.0	
X3D-XL [29]	79.1	93.9	81.9	95.5	-	-	1.5	
X3D-XXL [29]	80.4	94.6	-	-	-	-	5.8	
TimeSFormer-L [9]	80.7	94.7	82.2	95.6	-	-	7.14	
VATT-Base	79.6	94.9	80.5	95.5	38.7	67.5	9.09	
VATT-Medium	81.1	95.6	82.4	96.1	39.5	68.2	15.02	
VATT-Large	82.1	95.5	83.6	96.6	41.1	67.7	29.80	
VATT-MA-Medium	79.9	94.9	80.8	95.5	37.8	65.9	15.02	

Table 1: Video action recognition accuracy on Kinetics-400, Kinetics-600, and Moments in Time.

[9] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095, 2021. 2, 3, 6, 7

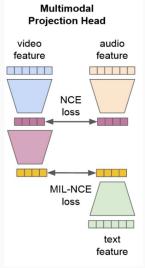
Fine-tuning

Fine-tune VATT's

- vision transformer for vision-tasks
- audio transformer for audio-tasks

Zeo-shot:

- Feed video-text pairs
- Extract representation from common space
- Rank videos based on their similarities to the input text



Method	mAP	AUC	d-prime
DaiNet [21]	29.5	95.8	2.437
LeeNet11 [55]	26.6	95.3	2.371
LeeNet24 [55]	33.6	96.3	2.525
Res1dNet31 [49]	36.5	95.8	2.444
Res1dNet51 [49]	35.5	94.8	2.295
Wavegram-CNN [49]	38.9	96.8	2.612
VATT-Base	39.4	97.1	2.895
VATT-MA-Medium	39.3	97.0	2.884

Table 2: Finetuning results for AudioSet event classification.

Method	PRE-TRAINING DATA	TOP-1	TOP-5
iGPT-L [16]	ImageNet	72.6	2
ViT-Base [25]	JFT	79.9	
VATT-Base	-	64.7	83.9
VATT-Base	HowTo100M	78.7	93.9

Table 3: Finetuning results for ImageNet classification.

			YouC	look2	MSR	-VTT
Method	BATCH	Еросн	R@10	MedR	R@10	MedR
MIL-NCE [59]	8192	27	51.2	10	32.4	30
MMV [1]	4096	8	45.4	13	31.1	38
VATT-MBS	2048	4	45.5	13	29.7	49
VATT-MA-Medium	2048	4	40.6	17	23.6	67

Table 4: Zero-shot text-to-video retrieval.

Learned Feature Visualization

Justification for design choice:

It is worth noting that there is no clear difference between the modality-agnostic features and the modality-specific ones

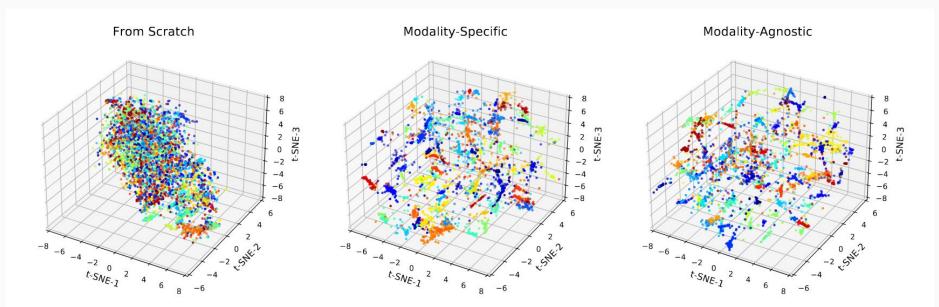
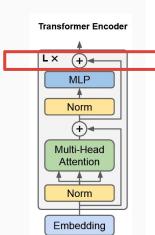


Figure 2: t-SNE visualization of the feature representations extracted by the vision Transformer in different training settings. For better visualization, we show 100 random classes from Kinetics-400.

Different layers/nodes have different jobs, depending on the modality:

- Early nodes for text
- Middle layer for video/audio
- Later layer for aggregation



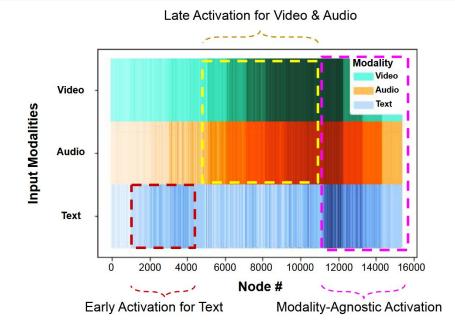


Figure 4: The average node activation across the Modality-Agnostic-Medium VATT while feeding a multimodal video-audio-text triplet to the model.

the average activation of each node at the output of the MLP module, before the residual addition

- Randomly drop 75%,50%, 25%, 0%

 Prefer High-resolution inputs

	DropToken Drop Rate				
	75%	50%	25%	0%	
Multimodal GFLOPs	188.1	375.4	574.2	784.8	
HMDB51	62.5	64.8	65.6	66.4	
UCF101	84.0	85.5	87.2	87.6	
ESC50	78.9	84.1	84.6	84.9	
YouCookII	17.9	20.7	24.2	23.1	
MSR-VTT	14.1	14.6	15.1	15.2	

Table 5: Top-1 accuracy of linear classification and R@10 of video retrieval vs. drop rate vs. inference GFLOPs in the VATT-MBS.

Resolution/	DropToken Drop Rate					
FLOPs	75%	50%	25%	0%		
$32 \times 224 \times 224$	-	-	-	79.9		
Inference (GFLOPs)	-	-	-	548.1		
$64 \times 224 \times 224$	-	-	1	80.8		
Inference (GFLOPs)	-	-	-	1222.1		
$\overline{32 \times 320 \times 320}$ Inference (GFLOPs)	79.3 279.8	80.2 572.5	80.7 898.9	81.1 1252.3		

Table 6: Top-1 accuracy of video action recognition on Kinetics400 using high-resolution inputs coupled with DropToken vs. low-resolution inputs.

Questions?