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Some trivia to start with…

● Probable inspiration of the title of the 
paper, a 2022 film that won big in the last 
Academy Awards!

● But, we are not going to discuss movies…



In a nutshell…

● Track every pixel in each frame
○ Not simply object/semantic concepts; goes even 

finer to pixel-space

● Globally consistent motion representation 
○ Pixel level motion trajectory across full video

● Can handle occlusion to a great extent
○ A limitation for several motion estimation 

methods

● Test-time optimization
○ Needs to be optimized per-video basis



Motivation

● Prior motion estimation methods fail at modeling motion of a video holistically

○ Sparse feature tracking models only certain key points/pixels which are easy to track (edges, 
corners, etc.) 

○  Optical flow being a pairwise motion field is most effective for nearby/consecutive frames and 
hence works well only for smaller temporal windows

○ Chaining approaches that can compute multi-frame flow fields are prone to drift errors which get 
accumulated with each frame.



Challenges

● To maintain accurate trajectories across long video sequences

● Tracking points through episodes of occlusion

● Ensuring both spatial and temporal coherence (i.e. trajectories to be continuous 
and consistent in space)



Background – Optical Flow

● It is a motion field comprising vectors at each spatial location that denote the 
direction of motion and also its magnitude, computed between a pair of 
images.

● Colour denotes direction of motion, while its intensity denotes the magnitude.



RAFT: A SoTA Optical Flow estimator

● Constructs a 4D correlation volume using inner products of all pairs of feature vectors.
● This is pooled at multiple scales to generate multiscale volumes.
● The optical flow is recurrently refined based on looking up values from the set of correlation volumes.

Image Credits: Zachary Teed and Jia Deng, RAFT: Recurrent All-pairs Field Transforms for Optical Flow, ECCV 2020



Methodology

● OmniMotion proposes a 3D mapping approach for motion estimation in 
videos

● The principle is based on bijective mapping of the pixels of a given frame to a 
global structure that preserves the motion behaviour across all frames

(“Bijective” means a function in which each data point in its domain can be mapped to exactly one point in 
its co-domain, and for every point ‘y’ in its co-domain there exists atleast one ‘x’ such that f(x)=y)

● Specifically, each of the (local) frames are represented as a “quasi 3D” 
coordinate frame that are mapped to the global canonical 3D volume

● The bijections are parameterized by an invertible NN comprising affine 
transformations

● The mapping of local to global volumes and its subsequent optimization 
shares similarities with how NeRFs work.



Background – Neural Radiance Fields (NeRFs)

● NeRFs are used for synthesis of novel views, given multiple views of a scene.

● A ray of light is passed through the given view, and points are sampled from its trajectory. Each 
point is denoted by spatial coordinates (x,y,z) and its viewing direction (θ,Φ), which is fed into 
an MLP to yield colour and volume density at that point.

Image Credits: Ben Mildenhall, and others, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020



Background – Neural Radiance Fields (NeRFs)

● Based on the density, volume rendering is performed in 3D space and the 
MLP 𝐹! is optimized using an L2 loss between GT and rendered volume.

● A similar principle is employed in OmniMotion too!
Image Credits: Ben Mildenhall, and others, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020



Methodology (contd.)

● A ray of light is shot normally [0,0,1] through the source pixel 𝑝" and points 
{𝑥"} are sampled from it, which are mapped to 𝑢 in the canonical volume 𝐺
using the INN. 

● Next, similar to NeRFs, the colour and density of 𝑢 is estimated using 𝐹!, 
which is a 3-layer GaborNet MLP.



Methodology (contd.)

● Now taking inverse of the INN we can obtain {𝑥#} from {𝑥"}.
● Thus, we essentially obtain a volume density in 𝐺 corresponding to each point 

in {𝑥"} which correspond one-one to {𝑥#}.
● The set of points {𝑥#} are alpha composited and projected onto target pixel 𝑝#

(corresponding to queried location 𝑝").



Training Objectives

● Flow loss
○ Primary loss function
○ Minimizes MAE between predicted flow and 

pseudo-GT flow (from RAFT)

● Photometric loss
○ Enforces color consistency between target 

(predicted) and source pixels using MSE loss

● Auxiliary photometric loss (NOT in paper!)
○ Pairwise photometric loss computed using 

randomly sampled pixels (not adjacent pixels)

● Regularization loss
○ Penalizes large accelerations between adjacent 

frame pixels to ensure temporal smoothness



Implementation

● Hard sample mining
○ Pairwise flows can be notoriously noisy, especially when they are temporally far apart (large 

displacement)
○ A naïve solution would be to filter out the erroneous flows
○ This, however, would create an imbalance in the sample distribution, since only simple motions 

whose flows are highly reliable would remain
○ Instead, hard sample mining is adopted where flows are cached periodically and those with high 

errors are sampled more frequently.
○ Error maps are computed using Euclidean distance, and they are employed to adjacent frames where 

flow fields are highly reliable

● Training configuration
○ Adam, 200k iterations
○ K=32 points sampled from each ray
○ 256 pairs of correspondences across 8 pairs of frames

● Datasets
○ DAVIS, Kinetics, RGB-Stacking



Qualitative Results

● Effectively tracks occluded pixels in scenes
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Quantitative Results – SoTA comparison

● OmniMotion essentially builds on SoTA optical flow baselines (RAFT/TapNet) and 
considerably improves upon their performances on Kinetics and DAVIS

● TC improvement is reported; but it is almost directly related to the explicit 
regularization loss term

● Gains on some metrics are small, especially in RGB-Stacking



Quantitative Results – Ablation study 

● Ablation study done on 
DAVIS dataset

● As expected, absence of flow 
loss greatly hurts temporal 
coherence/occlusion.

● Hard mining is essential to 
ensure a proper distribution 
of motion samples; uniform 
sampling reduces temporal 
coherence.



Further Analysis

● Pseudo-depth maps generated by the model shows high quality separation of 
foreground and background

● This relative ordering of surfaces is crucial for tackling occlusion



Failure Cases

● Fails to track pixel trajectories in very fast motion videos
This may be due to the regularization loss in the training objective, since it explicitly penalizes high 
magnitude displacements in adjacent frames, which is likely to be present in fast motion videos



Final thoughts...

● The bijective mapping from a local quasi-3D space to a global canonical 3D 
volume is very interesting and may be extended to motion editing/video 
generation tasks

● Qualitative results depicted show a lot of promise, while the quantitative 
gains over SoTA are non-trivial 

● A major limitation however is – it needs to be run separately on each video
○ the training time is roughly 9 hours on a single A6000 GPU
○ This hinders the scalability of OmniMotion

● It is yet to be tested on longer videos, which would aptly justify its proposal

● Ethical concern regarding the fourth loss term in the training objective (?!)



Thank you!


