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Motivation



Motivation

● We want to improve the throughput of ViT models.

○ i.e. Improve model inference image/s (e.g. 100 im/s -> 200 im/s)

● Let’s say we want to:

○ 2 times faster than SotA

○ Hotplug into the model without re-training

○ Without dropping the accuracy

● How to do that?



How To Do That? Without Training & Improve Throughput?

Any thoughts?



How To Do That? Without Training & Improve Throughput?

● Having a more efficient transformer
● Token reduction by pruning, or masking
● Combining tokens



Introducing Token Merging - ToMe



Token Merging - ToMe

● Core Concept
○ ToMe merges (combine) the redundant tokens in each ViT layer.
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Token Merging - ToMe

● Core Concept
○ ToMe merges (combine) the redundant tokens in 

each ViT layer.
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Token Merging - ToMe

● Core Concept
○ ToMe merges (combine) the redundant tokens in each ViT layer.

● When To Merge
○ Between the attention and MLP branches of each transformer block.
○ This enables on existing model without training! 

Taiwanese macaque, Kaohsiung, 
Taiwan. By Louie Lu, all rights 
reserved.

Fig. 1 (b), from ToMe, modified by Louie Lu. Declare fair use.

https://arxiv.org/pdf/2210.09461.pdf


Token Merging - ToMe

● Core Concept
○ ToMe merges (combine) the redundant tokens in each ViT layer.

● When To Merge
○ Between the attention and MLP branches of each transformer block.

● Result
○ Image Classification: 2 times faster than ViT-L @ 512
○ Video Classification: 2.2 times faster than ViT-L

Taiwanese macaque, Kaohsiung, 
Taiwan. By Louie Lu, all rights 
reserved.

Fig. 1 (b), from ToMe, modified by Louie Lu. Declare fair use.

https://arxiv.org/pdf/2210.09461.pdf


Token Merging - ToMe

● Technical Simplicity
○ Only 8 files, and 494 lines of code.



Token Merging - ToMe

● Technical Simplicity
○ Only 8 files, and 494 lines of code.
○ Easy to apply on existing model.

■ tome.patch.timm(model, trace_source=True)



Space High-level Summary of Token Merging - ToMe

● ToMe combines similar tokens in each layer.
● It can hotplug to existing model.

○ Without training, ToMe can hotplug to existing ViT model, and gain 2x 
throughput improvement without losing accuracy.

● It can also applied on training
○ ToMe shows 2x training speed on MAE fine-tuning on video.



Details of ToMe



Recap the Core of ToMe

● ToMe combines similar tokens in each layer.



Recap the Core of ToMe

● ToMe combines similar tokens in each layer.
● This yields the following questions:

○ What is similarity?
○ How many tokens combined in each layer?
○ How to combine?
○ How to maintain softmax attention result?
○ How to use ToMe in training?



1. Token Similarity

● Distance between two tokens in feature space?
○ Not necessarily optimal.

● Using transformer QKV self-attention keys (K)
○ Recap that the keys are already used in dot product similarity.
○ We define the token similarity as the dot product similarity metric (i.e. 

cosine similarity) between the keys of each token.



2. Token Combination Strategy 

● We merge and reduce r tokens per block.
● For a model with L blocks, we gradually merge r * L tokens.
● ToMe at most reduce 50% of tokens.



2. Token Combination Strategy 

● We merge and reduce r tokens per block.
● For a model with L blocks, we gradually merge r * L tokens.
● ToMe at most reduce 50% of tokens.
● E.g. Input size=24x24+1, L=24 blocks model, and r=25 ToMe

○ Patchify: 577 tokens (24x24+1 CLS token)
○ Block 1: 552 tokens left (+1 CLS token)
○ Block 22: 27 tokens left
○ Block 23: 14 tokens left (50% of 26 => reduce 13 tokens)
○ Block 24: 8 tokens left (50% of 13 => reduce 6 tokens)



3. Bipartite Soft Matching - In 5 Steps

Step 5. Regroup the 
sets back together

Step 1. 
Assign 
Tokens to 
Set A and 
Set B

Step 2. Draw one 
edge from Set A 
token to their most 
similar token in Set B

Step 3. Keep the top r 
most similar edges
(e.g. r=3)

Step 4. Merge 
connected 
tokens



3. Bipartite Soft Matching - In 5 Steps

Tokens



3. Bipartite Soft Matching - Step 1

Assign Tokens to 
Set A and Set B



3. Bipartite Soft Matching - Step 2

Draw one edge from Set A token to 
their most similar token in Set B



3. Bipartite Soft Matching - Step 3

Keep the top r most similar edges
(e.g. r=3)



3. Bipartite Soft Matching - Step 4

Merge connected tokens 
(e.g. averaging their 
features)



3. Bipartite Soft Matching - Step 5

Regroup the sets back together
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4. Proportional Attention

● If we merge the tokens with same key, it will changes the outcome of 
softmax attention.

● That is, that key has less effect in the softmax term.
● Fix by proportional attention:

○ Where s is the size of each token. (how many patches the token 
represents)



5. Training with ToMe

● Simply treat token merging as a pooling operation and backprop through the 
merged tokens as we were using average pooling.



Recap Details of ToMe

● Token Similarity
○ Use QKV self-attention keys cosine similarity.

● Token Combination Strategy
○ Reduce r tokens in each block, at most reduce 50% of tokens in each block.

● Bipartite Soft Matching
○ Linear merging on set A and B, average, and concatenate.

● Proportional Attention
○ Record s=size of token, add log(s) at attention

● When used in training, treat as pooling operation.



Ablation study



What do we want to know?
1. 

2. 

3. 

4. 

What to measure?
1. 

2. 



What do we want to know?
1. The input to the proposed module

2. Similarity method

3. Merging method

4. Group assignment method

What to measure?
1. Model performance

2. Speed





Similarity score



Merging method



Group assignment method

1. Better sampling methods?

2. Unsymmetrical partition? 

3. Cyclic window?



Test with kmeans - it’s not about clustering but merging





Merging schedule



Merging schedule



Test with various models



Test settings

1. Off-the-shelf
a. Supervised: AugReg, SWAG
b. Self-supervised: MAE

2. Incorporate the proposed module and retrain a new model 
with the sampe recipe.



The larger a model is, the less it is affected.





“Upgrade with no cost”



Compared to other pruning methods:



How about other modalities?



Video results



Audio



Visualization



2D attention



3D attention



Thanks



Ablate proportional attention - not solid


