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Motivation



Motivation

e \We want to improve the throughput of ViT models.

o i.e. Improve model inference image/s (e.g. 100 im/s -> 200 im/s)
e Let's say we want to:

o 2 times faster than SotA

o Hotplug into the model without re-training

o Without dropping the accuracy

e How to do that?



How To Do That? Without Training & Improve Throughput?

Any thoughts?



How To Do That? Without Training & Improve Throughput?

e Having a more efficient transformer
e Token reduction by pruning, or masking
e Combining tokens



Introducing Token Merging - ToMe



Token Merging - ToMe

e Core Concept
o ToMe merges (combine) the redundant tokens in each ViT layer.
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Token Merging - ToMe

e Core Concept
o ToMe merges (combine) the redundant tokens in each ViT layer.
e \When To Merge

o Between the attention and MLP branches of each transformer block.
o This enables on existing model without training!
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Fig. 1 (b), from ToMe, modified by Louie Lu. Declare fair use.
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Token Merging - ToMe

e Core Concept

o ToMe merges (combine) the redundant tokens in each ViT layer.
e \When To Merge

o Between the attention and MLP branches of each transformer block.
e Result

o Image Classification: 2 times faster than ViT-L @ 512
o Video Classification: 2.2 times faster than ViT-L
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Token Merging - ToMe

e Technical Simplicity
o Only 8 files, and 494 lines of code.



Token Merging - ToMe

e Technical Simplicity
o Only 8 files, and 494 lines of code.
o [Easy to apply on existing model.
m tome.patch.timm(model, trace source=True)



Space High-level Summary of Token Merging - ToMe

e JoMe combines similar tokens in each layer.

e It can hotplug to existing model.
o Without training, ToMe can hotplug to existing ViT model, and gain 2x
throughput improvement without losing accuracy.

e |t can also applied on training
o ToMe shows 2x training speed on MAE fine-tuning on video.



Details of ToMe



Recap the Core of ToMe

e JoMe combines similar tokens in each layer.



Recap the Core of ToMe

e JoMe combines similar tokens in each layer.
e This yields the following questions:

O O O O O

What is similarity?

How many tokens combined in each layer?
How to combine?

How to maintain softmax attention result?
How to use ToMe in training?



1. Token Similarity

e Distance between two tokens in feature space?
o Not necessarily optimal.
e Using transformer QKV self-attention keys (K)

o Recap that the keys are already used in dot product similarity.
o We define the token similarity as the dot product similarity metric (i.e.
cosine similarity) between the keys of each token.



2. Token Combination Strategy

e \We merge and reduce r tokens per block.
e For a model with L blocks, we gradually merge r * L tokens.
e ToMe at most reduce 50% of tokens.



2. Token Combination Strategy

We merge and reduce r tokens per block.

For a model with L blocks, we gradually merge r * L tokens.
ToMe at most reduce 50% of tokens.

E.g. Input size=24x24+1, L=24 blocks model, and r=25 ToMe

O

O O O O

Patchify: 577 tokens (24x24+1 CLS token)

Block 1: 552 tokens left (+1 CLS token)

Block 22: 27 tokens left

Block 23: 14 tokens left (50% of 26 => reduce 13 tokens)
Block 24: 8 tokens left (50% of 13 => reduce 6 tokens)



3. Bipartite Soft Matching - In 5 Steps
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3. Bipartite Soft Matching - Step 1
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Assign Tokens to
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3. Bipartite Soft Matching - Step 2
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Draw one edge from Set A token to
their most similar token in Set B
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3. Bipartite Soft Matching - Step 3
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Keep the top r most similar edges
(e.g. r=3)
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3. Bipartite Soft Matching - Step 4
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Merge connected tokens
(e.g. averaging their
features)

00ggo



3. Bipartite Soft Matching - Step 5
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3. Bipartite Soft Matching - In 5 Steps
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Step1.  Step2.Drawone  step 3. Keep the top r SteP 4- Merge Step 5. Regroup the
Assign edge from Set A most similar edges ~ oNnected  sets back together
Tokens to  token to theirmost (g g. r=3) tokens

Set A and similar token in Set B

Set B



4. Proportional Attention

e If we merge the tokens with same key, it will changes the outcome of

softmax attention.
e Thatis, that key has less effect in the softmax term.

e Fix by proportional attention:

KT
A = softmax @ - log s
Vd

o Where s is the size of each token. (how many patches the token
represents)



5. Training with ToMe

e Simply treat token merging as a pooling operation and backprop through the
merged tokens as we were using average pooling.



Recap Details of ToMe

e Token Similarity
o Use QKV self-attention keys cosine similarity.

e Token Combination Strategy

O Reduce rtokens in each block, at most reduce 50% of tokens in each block.
e Bipartite Soft Matching

o Linear merging on set A and B, average, and concatenate.
e Proportional Attention

o Record s=size of token, add log(s) at attention
e \When used In training, treat as pooling operation.



Ablation study



What do we want to know?
1.
2.
3.
4.

What to measure?
1.
2.



What do we want to know?
1. The input to the proposed module
2. Similarity method
3. Merging method

4. Group assignment method

What to measure?
1. Model performance

2. Speed



b) Transformer Block + Token Merging
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feature ace 1m/s

Xpre 83.02 186.8

X 83.70 182.8

K 84.25 182.9

Q 84.04 182.8

V 83.80 182.9



Similarity score

function acc 1m/s

eucl 84.26 182.5
cosine 84.25 182.9
dot 82.78 183.0
softmax 82.00 183.0



Merging method

method acc 1m/s
keep one 81.01 1854
max pool 83.50 184.6
avg pool 83.57 183.8

weighted avg 84.25 182.9

(d) Combining Method. Averag- 1/4
ing tokens weighted by their size,
s (see Eq. 1), ensures consistency.

1 patch
- 3 patches
+3/4



Group assignment method

order acc 1m/s

sequential ~ 81.07 183.0
alternating  84.25 182.9
random 83.80 181.7

1. Better sampling methods?

2. Unsymmetrical partition?

3. Cyclic window?



Test with kmeans - it's not about clustering but merging

style algorithm acc 1m/s
prune random 79.22 184.4
prune attn-based 79.48 183.8
merge kmeans (2 iter) 80.19 169.7
merge kmeans (5 iter) 80.29  147.5
merge greedy matching 8436 1794
merge bipartite matching 84.25 182.9






Merging schedule

Mean Throughput: 964

Mean Throughput: 1120

Mean Throughput: 1320

Mean Throughput: 1514

Mean Throughput: 1018

Mean Throughput: 1231

Mean Throughput: 1415

Mean Throughput: 1613



Merging schedule
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Test with various models



Test settings

1. Off-the-shelf
a. Supervised: AugReg, SWAG
b. Self-supervised: MAE

2. Incorporate the proposed module and retrain a new model
with the sampe recipe.



Accuracy (%)

The larger a model is, the less it is affected.
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(a) AugReg Models. A collection of ImageNet-21k pretrained models (Steiner et al., 2022).
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(c) MAE Models. Self-supervised models pretrained
on ImageNet-1k (He et al., 2022).



“Upgrade with no cost”

vanilla

vanilla

ﬁ

ﬁ

model input| acc  gflops  im/s

VIT-L. > 224 | 85.77 61.6 03
Eff-B6 528 | 840 190  96°
MViTv2-L 224 | 853  42.1 81

ToMe

VIiT-H > 224 | 8.1 726 81 <+
VIT-H )2, 224 | 86.5 929 63

ViT-H Y25 224 | 8697 167.4 35
SwinV2-H* 224 | 857 118.1 49



Compared to other pruning methods:

inference train
method acc gflops 1m/s  speed
DeiT-S 03 |
A-ViT 78.6" 2.9 . £
DynamicViT  79.3 2.9 1505 |
SP-ViT 79.3 2.6 - I
ToMe ', 794 27 1552 1.5x

ToMe 5S¢ 793 27 1550



How about other modalities?



Video results

model input acc gflops

ViT-L MA! 162242 | 847 598 x 1 x 10
Swin-L' 32x224% | 83.1 604 x 3 x4
MViTv2-L  16x224% | 84.3 377x1x10

ToMe

ViT-L 2% 16x224% | 845 325 x 1 x4
ViT-L MA;E. 16x224% | 84.5 281x1x10
ViT-L Y25 16x224% | 844 281x1x10




Audio

model mAP gflops sample/s
ViT-BY 473  48.6 103
ViT-B)2% 462 363 136
ViT-BM'%, 431 247 200
VIT-BYY  46.4*  48.6 103
ViT-B)yS, 463 36.3 136

ViT-BY % 460 247 200
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Visualization






3D attention
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Ablate proportional attention - not solid

SIC prop  acc 1m/s

mae 84.25 1829
mae v 83.84 180.9
augreg 82.15 182.8
augreg v 83.51 180.8

(f) Proportional Attn. Without
MAE pretraining, off-the-shelf

models require prop attn.



