ViperGPT: Visual
Interface via Python
Execution for
Reasoning

Didac Suris, Sachit Menon, Carl Vondrick

Presented by Dohhyun Kim, Andy Lauer

Motivation

Visual Queries

Textual question about an image
Requires both visual understanding and reasoning
Example: "How many muffins can each kid have
for it to be fair?"
1. Find the muffins and children in image
2. Count how many there are
3. Determine the muffins should be divided
e |Inherently compositional problems

Current Approaches

e End-to-end models

o Black box results
Must perform all tasks in a single pass
Loses advantages of specialized models
Computers can do math without machine learning
Requires training of entire model

o O O O

e Can we take advantage of composing individual models to solve a larger
task?

Method

Architecture

e Main idea: break complex task
into modular sub-tasks
, e Use specialized models to solve
each sub-task via API calls

ViperGPT: "A framework that leverages
code-generation models to compose
vision-and-language models into subroutines'

Query
"How many muffins can each
kid have for it to be fair?"

4 N

Visual Input

Result
ll4ll

Architecture

e Main idea: break complex task
into modular sub-tasks

e Use specialized models to solve
each sub-task via API calls

[Query] [Visuallnput]

ViperGPT

API

e Defines functions available to the code
generation model
e Each function performs a specific task

o Typically implemented with a
specialized model

e Examples: find(), exists(),
verify property(), simple query()
e Only definition and docstring given to
code LLM
o Enables abstraction from

implementation details
o Improved modularity

def find(self, object_name: str) -> List[ImagePatch]:

de

-

""“Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
Otherwise, returns an empty list.
Parameters
object_name : str
the name of the object to be found

Returns

List[ImagePatch]
a list of ImagePatch objects matching object_name contained in the crop

Examples

>>> # return the children
>>> def execute_command(image) -> List[ImagePatch]:

>>> image_patch = ImagePatch(image)

>>> children = image_patch.find("child")
>>> return children

exists(self, object_name: str) -> bool:

“"“Returns True if the object specified by object_name is found in the image, and False otherwise.
Parameters
object_name : str

A string describing the name of the object to be found in the image.

Examples
>>> # Are there both cakes and gummy bears in the photo?
>>> def execute_command(image)->str:

>>> image_patch = ImagePatch(image)

>>> is_cake = image_patch.exists("cake")

>>> is_gummy_bear = image_patch.exists("gummy bear")
>>> return bool-to-yesno(is_cake and is_gummy-bear)

return len(self.find(object_name)) > 0

Pretrained Models Used

Model Task Example API call

GLIP Object detection find("drink"), exists("boy")

X-VLM Text-image similarity verify property("bookcase", "wood")

MiDaS Depth estimation pizza.compute depth()

GPT-3 External knowledge 11lm_query("Who is the founder of {car_brand}?")
BLIP-2 Simple visual queries simple_query("What toy is this?")

Code Generation

e Given input query and API, create Python
program to complete task

e Codex from OpenAl

e Trained on natural language and internet
Python code

SEEEEI I INEEN
SEEENENjEEEEEN
TEEEEEE EEENEEEE
EEEEEEN EEEEEEN
EEEEER LLLLL L]
HEEER ANEEN
HEEER Ll

Generated Code Sample

Query: Are there water bottles to the right of
the bookcase that is made of wood?

In:
Generated code

def execute_command(image):
image_patch = ImagePatch(image)
bookcase patches = image_patch.find("bookcase")
for bookcase_patch in bookcase_patches:
is_wood = bookcase patch.verify property('"bookcase", "wood")
if is_wood:
water_bottle_patches = image_patch.find("water bottle")
for water_bottle_patch in water_bottle_patches:
if water_ bottle_patch.horizontal_center > \
bookcase_patch.horizontal center:
return "yes"
return "no"
return "no"

Generated Code Sample

Query: Are there water bottles to the right of
the bookcase that is made of wood?

———————————————

Execution

bookcase_patches= image_patch.
find("bookcase")

» bookcase_patches[@] = {ImagePatch}

water_bottle_patches = image_patch.
find("water bottle")
» water bottle_patches[0]
= {ImagePatches}

» bookcase_patches[@].
horizontal_center = {float} 239.0

» water_bottle_patches[0].
horizontal_center = {float} 608.5

...verify_ property('bookcase","wood") » water_bottle_patch.horizontal_center >

bookcase_patch.horizontal_center =

{bool} True Resylt:“yes”

» is_wood = {bool} True

O ERS

Experimental Setup

“We believe that the evident strength of

e Select four tasks for evaluation this approach may not be adequately
o Visual grounding explored by existing benchmarks”
o Compositional image question
answering

o External knowledge-dependent image
question answering
o Video causal and temporal reasoning
e Datasets
o GQA - Composition
o OK-VQA - External Knowledge
o NExT-QA - Visual Reasoning for videos

GQA

Table 2. GQA Results. We report accuracy on the test-dev set.
Accuracy (%) 1

N [20]
XMERT (31}
F [39]

w» BLIP-2[30] 44.7
N ViperGPT (ours) 48.1

GQA

* GQA. The GQA API contains all the contents in the API from Listing[I) up until the 11m_query function, which is not
used. The ImagePatch usage examples look like the following:

1 # Is there a backpack to the right of the man?

2 del execute_command (image) ->sir:

3 image_patch = ImagePatch(image)

4 man patches = image patch.find(*man")

5 # Question assumes one man patch

6 il len(man_patches) == 8:

7 # If no man is found, query the image directly

8 return image patch.simple query(*“Is there a backpack to the right of the man?*)
9 man_patch = man_patches|[8]

10 backpack_patches = image_patch. find("backpack")

" # Question assumes one backpack patch

12 if len(backpack patches) == 0:

13 return "no"

14 for backpack patch in backpack patches:

15 if backpack patch.horizontal center > man patch.horizontal center:
16 return “yes*

17 return "no*

Listing 3. GQA example.

OK-VQA

Model LLM Backbone | OKVQA

Table 3. OK-VQA Results. Flamingo Chinchilla-7B 44.7

Accuracy (%) 1 BLIP-2 Flan-T5xx1. (13B) 459

= LLaVA Vicuna-13B 544

[13] 50.5 MiniGPT-4 Vicuna-13B 37.5
F InstructBLIP Vicuna-7B -
l:] InstructBLIP Vicuna-13B -

\ IB2] 54.5 Shikra Vicuna-13B 472
73 cQ IDEFICS-9B LLaMA-7B =
IDEFICS-80B LLaMA-65B =
|:] , Qwen-VL Qwen-7B -
Qwen-VL-Chat Qwen-7B -
PNP-VQA [52] 35.9 LLaVA-1.5 Vicuna-1.5-7B -
PICa @I 433 : [+Svl;\aﬂ|:(’5‘n4v \\//-icuna-ll.SS-IZl; -
A.a -1. icuna-1.o-1. o

&g BLIP-2 [30] 459 MiniGPT-v2 LLaMA-2-Chat-7B | 569

Flamingo [1]] 50.6 MiniGPT-v2-Chat LLaMA-2-Chat-7B | 55.9
G VILA-7B LLaMA-2-7B =
ViperGPT (ours) 51.9 VILA.13B LTsMA2-13B B
+ShareGPT4V ~ LLaMA-2-13B -

OK-VQA

Table 3. OK-VQA Results.

* OK-VQA. The API only uses the simple_query method from ImagePatch. It additionally uses the 1lm_query function.
The ImagePatch usage examples look like the following:

1
2 # Who is famous for allegedly doing this in a lightning storm?

1 def execute command(image)->str:

4 # The question is not direct perception, so we need to ask the image for more information

5 # Salient information: what is being done?

6 image = ImagePatch(image)

7 quesses = []

8 action = image.simple_query("what is being done?”)

9 external_knowledge query = “Who is famous for allegedly {} in a lightning storm?".format(action)
10 step by step guess = 1lm query(external knowledge query)

11 guesses.append(“"whal is being done is {}".formal(action) + ", so " + step_by_step_guess)

12 direct_guess = image.simple_query("Who is famous for allegedly doing this in a lightning storm?)
13 guesses.append(direct guess)

14 return process_guesses(“who is famous for allegedly doing this in a lightning storm?", guesses)

Listing 4. OK-VQA example,

NEXT-QA

Table 4. NEXT-QA Results. Our method gets overall state-of-the-

art results (including supervised models) on the hard split. “I™ and

“C” stand for “temporal” and “causal” questions, respectively.
Accuracy (%) 1

Hard Split- T Hard Split- C Full Set
S vor 5]
HiTeA [61)
R ViperGPT (ours) 49.8 56.4 60.0

Methiods Val ATP-hard subset
Acc@C Acc@T Acc@D Acc@All | Acc@C Acc@T Acc@All
Supernsed
VIC |57} ncovzoan 19.6 51.5 63.2 52.3 - - -
AT [cvPRr2022] 53.1 50.2 66.8 3 384 36.5 38.8
MIST |CVPR2023| M-(i 5(;.6 66.9 57.2 - - X
GF [NeuriS2023) 56.9 57.1 70.5 58.8 48.7 50.3 49.3
CoVQT |f ITPAMI2023] Hh9.7 h8.0 69.9 60.7 - - -
SeViT JarXiv2023.1] 51.0 51.1 7.3 56.7 13.3 16.5 -
HiTeA [1cCv2023] 62.4 58.3 75.6 63.1 47.8 48.6 -
Zero-shot
VFC {29] piccvaeas 51.6 45.4 64.1 5.5 32.2 30.0 314
IntcrnV idw JarXiv2022.12| 434 480 65.1 491 - - -
AssistGP’ |arXiv2023.6] 60.0 514 67.3 58.4
ViperGPT 45] icovaoes - - - 60.0 - - -
SeViLA [Neurtpszoz3) | 61.3 61.5 75.6 63.6 - - -
LLoVi [67] [arxiv2024.2] 69.5 61.0 75.6 67.7 - - -
VideoAgent (ours) | 72.7 64.5 81.1 71.3 | 57.8 58.8 58.4

Table 3: Results on NEzT-QA compared to the state of the art. C, T, and D are causal,
temporal, and descriptive subsets, respectively.

NEXT-QA

* NeXT-QA. The videoSegment class is added to the API definition, and the available ImagePatch methods are find,
exists, best_text_match and simple_query. The function best_image_match is also used. The ImagePatch usage
examples look like:

i # why does the man with a red hat put his arm down at the end of the video
2 # possible answers: [‘watching television’, ‘searching for food’, "move its head’, ’'looking over cardboard box’, ‘looks at the camera’]
1 def execute command(video, possible answers, question)->[str, dict]:

Reason every step

5 video_segment = VideoSegment(video)

6 # Caption last frame of the video (end of video)

7 last frame = ImagePatch(video segment, -1)

% last_caption = last_frame.simple query(“What is this?")

9 men = last_frame. find(“man”)

10 if len(men) == O:

1" men = [last frame]

FS

12 man = men[8]

13 man_action = man.simple_query("what is the man doing?")

14 # Answer the question. Remember to create the info dictionary

15 info = {

16 "Caption of last frame": last_caption,

17 “Man looks like he is doing®: man_action

18 }

19 answer = video_segment.select_answer(info, question, possible_answers)
20 return answer, info

Listing 5. NeXT-QA example.

Examples of Logic and Math

Query:

Is the animal that is not gray a dog?

https://docs.google.com/file/d/1yEl-I_1hyJagQbqgxTgEcYKgLt8xFo8P/preview
https://docs.google.com/file/d/1vzBhjVkncGjnJXRDJcEM_ZUMmBiTWtk1/preview

Related W

orks

Jan. ~ Feb.

2023

Apr.

2022

aws

rd CogCoM MobileVLM V2 SPHINX-X

VA

LLaVA-Phi 3DMIT GroundingGPT ModaVerse

a-UMi

O Meituan

Emu-2 Intern-VL v* MobileVLM TinyGPT-V

o
RLHF-V Dolphins PixelLM Silkie

Lyrics

||
X-InstructBLIP CoDi-2

' [|

GLaMM mPLUG-Owl2 TEAL LLaVA-Plus

ShareGPTAV LLaMA-VID

LanguageBind MiniGPT-5

L]
CM3Leon LaVIT NEXT-GPT Kosmos-2.5 DreamLLM

o ~ ==
LISA OpenFlamingo Chinese-LLavA ASM
.

]
Lynx

BLIVA

mPLUG-DocOwl

[H] EZ ?}"“%ﬁ Google B

LLaVA-Med Video-LLaMA Video-ChatGPT AudioPalM Kosmos-2

=

Otter

GPT4Rol mu

salesforce

X-LLM

Google mm @ a

MM-Interleaved DiffusionGPT MLLM-Tool

Kosmos-G | LaVA-1.5 MiniGPT-v2

MM-GPT VideoChat InstructBLIP SpeecGPT DetGPT EmbodiedGPT PandaGPT

=
GOR VisLinglnstruct

Meituan =

LLaVA-MoLE LLaVA-NeXT

Fi
Yi-VL

JPMorgan

DoclLLM

CogAgent Osprey VA

VL-GPT

PaperOw!

e

Monkey Volcano Qwen-Audio DRESS LiON

ADEPT

Fuyu-8B SALMONN ControlLLM

VisCPM Qwen-VL

h
BuboGPT ChatSpot

“InternLl
XComposer

IDEFICS

&
A
Shikra

GILL

-

PaLM-E Visual ChatGPT ViperGPT GPT-4 MM-REACT HuggingGPT LLaVA MiniGPT-4 AudioGPT mPLUG-Owl

salesforce

BLIP-2 FROMAGe Kosmos-1

<

Flamingo

KAM-CoT

Google

Gemini

DocPedia

Google

PaLl-X

PAL: Program-aided Language Models

Program-aided Language models (this work)

—{ Input)
Q: Roger has 5 tennis balls. He buys 2 more cans of \

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

e (Gao, Madaan, Zhou et al.

e Published Nov. 2022(4 months before)

. The answer is
tennis _balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200

e Proposed code generation for logical reasoning loaves of bread on Monday moning. They sold 93 loaves

in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread

e Excludes vision component b i
{ Mod
A

loaves baked = 200

loaves sold morning = 93
loaves sold afternoon = 39

loaves returned = 6
The answer is
answer = loaves baked - loaves sold morning

- loaves sold afternoon + loaves returned

P>> printianswen)
i P,

Visual Programming

VisProg: Compositional visual reasoning
without training

e Guptaetal s
e Published Nov. 2022(4 months before)
e Covers a wide range of image tasks, not just QA _,’,7
e Does not generate actual code, just pseudocode o pogrn
Task Input Output Modules
Compositional Image + 2c 42

Visual QA(GOA) Question m Cropleft CropRight CropAbove CropBelow
Reasoning on Image Pair + True/False m
Image Pairs (NLVR) Statement

e Lo)
ColorPop BgBlur m

Factual Knowledge Image +
Object Tagging Instruction

Image Editing with Image +

Natural Language Instruction Image

VideoAgent/LLoVi

’ What does the dog play with at the beginning? ‘

A.ice B.bag C.cat D.bottle

Generate Captions "
..... e

VLM 50s: A dog is playing in a room. 1

250s: A dog is washing its body. ”

450s: A dog Is sniffing an ice. =

53s: A dog is playing with a bag. f/\—

QF Retrieve Frames
CLP

"A dog is playing with
something in a room.”

Predict Answer
Round-1: A Round-2: B

Self Reflect
Round-1: Not confident Round-2: Confident

Confident?

Find Missing Information
Round-1: 50s~250s, frames of “a dog is playing with...”

e Wang and Zhang et al. | Zhang and Lu et al.

e Published Feb. Mar. 2024(11,12 months after) | s seopmommucsssmnmesssr
e No code generation

e Similar in terms of combining VLM + LLM) ij'fioj; | cz,ptt'ow" P

e Outperforms ViperGPT, current SOTAs ::f:o;sa 'Efoap:-r;;:hbei:d: m;‘chs:g%.adm; Ch";:: 7
e Excels at long-range understanding 5‘"'""?"““"5 | l 1] | | .5:'.‘?'.’.‘.‘?‘_‘.‘_1‘??_‘?_'?’.15

1 Crefers to the :

\ _ Camera wearer_ »

Large Language Model

Answer 1

C sequentially chops |

j Iingredients, discards waste, |
and stores unused items.

Our Thoughts

Strengths

e Modularity, adoptable to tasks and future improvements

e No need to train

About
o GOOd at genera Uzation Code for the paper "ViperGPT: Visual
Inference via Python Execution for
e Foundational model KEspeli
Readme
e Transparency, easier to benchmark performance View license
Activity

Custom properties
1.6k stars

88 watching

< 020 < a8

113 forks

Weaknesses T

e

o Fredict Answer s
(_)_ Generate Caption: %] $O3 8 CED Retrieve Frames
VLM 50 Adog is playing in a room.

Self Reflect o) cuP
A dog is washing its body. nd-1: Not confident Round-2: Confident 'No| “A dog is playing with
c Adog is sniffing an ice. @ F dMlssmgl 'orm o ‘something in a room.”
53s: A dog is playing with a bag.
uay-ngwnﬁ -

! Whntwastheorderandorenzago:szs_a:_tlﬂ\s_ln_ﬂfild_eo_’___J_
e Model :ﬁi—_ "> 3
. . S T [
o Re-uses existing models s () ([s
i i] 4
Cchops éopensthe: lid: Csnrs salad |n. Cchops S
o Reliant on APl access o | e
] i
o Longer runtime due to larger modules? e —

Csequentially chops |
| Ingredients, discards waste, |
| _and stores unused items. |

o Perhaps not as big of impact as expected?

e Paper

O Experimental section did not measure computing costs/inference time

o Lack of ablations

Questions

