Unified-IO 2

Levi Harris, Xinyu Liu

Background

- LLMs (e.g., ChatGPT) become powerful chatbots using instruction tuning
- Text-only models
- LMMs (e.g, GPT-4V) extend LLM capabilities to many modalities
- Images, videos, etc.
- Can solve tasks across many domains
- Problem: more modalities + more data = complex models

GPT-4V
Text + Images In Text + Images Out* *With DallEs

Vision

Motivation

Generate music about this scene. (original) (1))

- Previous Models
- Used pre-trained LLMs
- Multiple models
- Lack generative capabilities
- Closed source
- Complex
- Unified Backbone
- Leverage data redundancies
- Learn shared representations
- Create an anything in, anything out assistant

Generate music about this scene. (haunted) (1))
Unified-IO is robust to many tasks and modalities

Overview

- UNIFIED-IO 2 processes all modalities with a single, unified encoder-decoder transformer

Figure 2. UnIFIED-IO 2 architecture. Input text, images, audio, or image/audio history are encoded into sequences of embeddings which are concatenated and used as input to an encoder-decoder transformer model. The transformer outputs discrete tokens that can be decoded into text, an image, or an audio clip.

Unified Task Representation

	Encode	Generate
Text, Sparse Structures, and Action	Text: the byte-pair encoding (LLaMA) Sparse Structures: 1000 special tokens Robotic Action: text commands + special tokens	the byte-pair decoder
Images and Dense Structures	a pre-trained ViT (feature from the second and second-to-last layers) + a linear layer	VQ-GAN model with 8×8 patch size that encodes a 256×256 image into 1024 tokens with a codebook size of 16512
Audio	spectrogram -> a pre-trained Audio Spectrogram Transformer (AST) + a linear layer	ViT-VQGAN with 8×8 patch size that encodes a 256×128 spectrogram into 512 tokens with a codebook size of 8196
Image and Audio History	the ViT/AST + a perceiver resampler	1

Unstable Training

- Using a standard implementation following UNIFIED-IO leads to increasingly unstable training as we integrate additional modalities.

Figure 3. Left: Training loss (a) and gradient norms (b) on different modality mixtures. Right: Training loss (c) and next token prediction accuracy (d) of UIO- $2_{\text {xxL }}$ on all modalities. Results were obtained before applying the proposed architectural improvements.

Architectural Modifications

- 2D Rotary Embedding
- QK Normalization
- Scaled Cosine Attention
- perceiver resampler

Figure 1: Implementation of Rotary Position Embedding(RoPE).

Training Objective

- Multimodal Mixture of Denoisers
- Text
- [R] - standard span corruption
- [S] - causal language modeling
- [X] - extreme span corruption
- Image \& Audio
- [R] - masked denoising where $x \%$ of the input is masked and requires re-construction
- [S] - generate the target modality conditioned only on other input modalities.

Training Objective

- Issue: information leak
- Autoregressive with Dynamic Masking
- Mask the token in the decoder except when predicting that token

Figure 5. Different training paradigms in masked image modeling (a) autoregressive, (b) mask auto-encoder, (c) autoregressive wit dynamic masking. Our proposed paradigms can maintain causa generation while avoiding information leaks in the decoder.

Efficient Implementation

- Issue: Heavily multimodal data -> highly variable sequence lengths
- Solution: Packing
- Tokens of multiple examples are packed into a single sequence
- The attentions are masked to prevent cross-attending between examples
- Optimizer: Adafactor

Multimodal Data

Figure 7. Construction of training samples from video data for the model's input and target. Given the video, we first extract the video frames and the corresponding audio spectrograms and transcript. Then, the data pass through a random selection process to determine the target modality, input modalities, training objective, input mask etc. The model's final input and target are shown in the top right.

Figure 6. Distribution of pre-training and instruction tuning data. Segments proportional to sampling rates. The inner section shows the target modality, and the outer section shows the data type. Please refer to Figure 9 and Figure 11 in the Appendix for particular datasets.

Experimental Results

- Pre-Training Benchmarks
- Weak performance on language modeling tasks

Method	HellaSwag \uparrow	TIFA \uparrow	SEED-S \uparrow	SEED-T \uparrow AudioCaps \downarrow	
LLaMA-7B [177]	$\mathbf{7 6 . 1}$	-	-	-	-
OpenLLaMa-3Bv2 [55]	52.1	-	-	-	-
SD v1.5 [154]	-	78.4	-	-	-
OpenFlamingo-7B [9]	-	-	34.5	33.1	-
UIO-2	38.3	70.2	37.2	32.2	3.08
UIO-2	47.6	77.2	40.9	34.0	3.10
UIO-2	xxL	54.3	$\mathbf{7 8 . 7}$	$\mathbf{4 0 . 7}$	$\mathbf{3 5 . 0}$

- Strong performance on text-to-image /

Zero-shot pre-training benchmarks. text-to-audio generation

- GRIT: Sparse + Dense Pixel Prediction
- New SOTA
- Unified-IO 2 is a powerful, general-purpose model for language-image taks

	Method	Cat.	Loc.	Vqa	Ref.	Seg.	KP	Norm.	All
	UIO-2 ${ }_{\text {L }}$	70.1	66.1	67.6	66.6	53.8	56.8	44.5	60.8
	UIO- $2_{\text {XL }}$	74.2	69.1	69.0	71.9	57.3	68.2	46.7	65.2
	UО-2xxL	74.9	70.3	71.3	75.5	58.2	72.8	45.2	66.9
$\stackrel{\rightharpoonup}{6}$	GPV-2 [89]	55.1	53.6	63.2	52.1	-			-
	$\mathrm{UIO}_{\mathrm{XL}}$ [123]	60.8	67.1	74.5	78.9	56.5	67.7	44.3	64.3
	UIO- $2_{\text {XXL }}$	75.2	70.2	71.1	75.5	58.8	73.2	44.7	67.0

Qualitative Results

https://unified-io-2.allenai.org/

Natural Language

Image Generation

Audio Generation

User

Audio Generation

Video Understanding

Image Dense Labeling

Embodied AI \& 3D

And much, much more!

Questions?

