
Paper Battle #1

DeiT [ICML'21]


T2T-ViT [ICCV'21]

Arguments for DeiT

Research Impact


 Arguably, the DeiT paper had a larger impact on the visual recognition community than the T2T-ViT paper.

Empirical Insights

 The paper presents many thorough empirical studies, valuable for advancing the state-of-the-art in vision transformers.

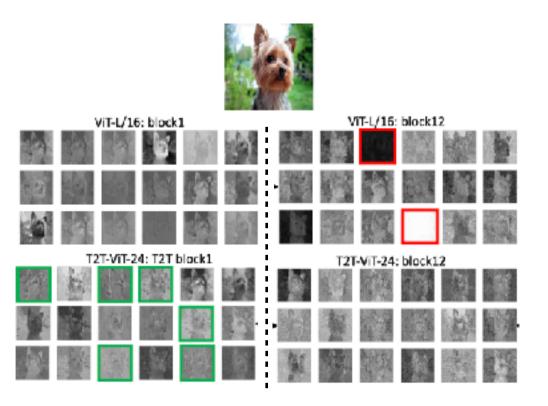
Very Strong Results

Network	nb of param.	image size	im/s	ImNet top-1	Real top-1	V2 top-1
ResNet-18	12M	224	4458.4	69.8	77.3	57.1
ResNet-50	25M	224	1226.1	76.2	82.5	63.3
ResNet-101	45M	224	753.6	77.4	83.7	65.7
ResNet-152	60M	224	526.4	78.3	84.1	67.0
RegNetY-4GF*	21M	224	1156.7	80.0	86.4	69.4
RegNetY-8GF*	39M	224	591.6	81.7	87.4	70.8
RegNetY-16GF*	84M	224	334.7	82.9	88.1	72.4
EfficientNet-B0	5M	224	2694.3	77.1	83.5	64.3
EfficientNet-B1	8M	240	1662.5	79.1	84.9	66.9
EfficientNet-B2	9M	260	1255.7	80.1	85.9	68.8
EfficientNet-B3	12M	300	732.1	81.6	86.8	70.6
EfficientNet-B4	19M	380	349.4	82.9	88.0	72.3
EfficientNet-B5	30M	456	169.1	83.6	88.3	73.6
EfficientNet-B6	43M	528	96.9	84.0	88.8	73.9
EfficientNet-B7	66M	600	55.1	84.3	-	-
EfficientNet-B5 RA	30M	456	96.9	83.7	-	-
EfficientNet-B7 RA	66M	600	55.1	84.7	-	-
KDforAA-B8	87M	800	25.2	85.8	_	-

Transformers: training 300 epochs

			me Pr			
ViT-B/16 ViT-L/16	86M 307M	384 384	85.9 27.3	77.9 76.5	83.6 82.2	Ē
DeiT-Ti	5M	224	2536.5	72.2	80.1	60.4
DeiT-S	22M	224	940.4	79.8	85.7	68.5
DeiT-B	86M	224	292.3	81.8	86.7	71.5
DelT-B†384	86M	384	85.9	83.1	87.7	72.4
DeiT-Tig.	6M	224	2529.5	74.5	82.1	62.9
DeiT-Sa	22M	224	936.2	81.2	86.8	70.0
DeiT-Ba	87M	224	290.9	83.4	88.3	73.2
DeiT-Ba ↑384	87M	384	85.8	84.5	89.0	74.8
	Transforme	rs: traini	ng 1000 ep	ochs		
DeiT-Tiv.	6M	224	2529.5	76.6	83.9	65.4
DeiT-St	22M	224	936.2	82.6	87.8	71.7
De/T-Ba	87M	224	290.9	84.2	88.7	73.9

87M


DeiT-B⁄a ↑384

The best DeiT-B model outperforms the best ViT-B model (even if the ViT is pretrained on the massive JFT dataset).

Arguments for T2T-ViT

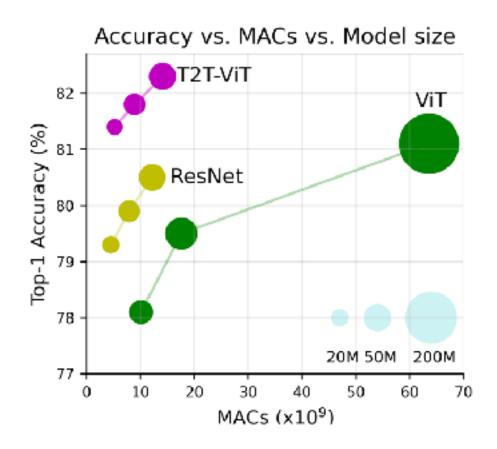
A More Elegant Solution

 T2T systematically identifies two major problems of ViTs and proposes an elegant architectural solution to fix them.

Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 224	fine-tuned 384
adamw	adamw	/	х	1	1	1	/	1	х	Х	81.8±32	83.1 ± 3
SGD	adamw	1	Х	1	1	1	1	1	Х	Х	74.5	77.3
adamw	SGD	1	X	1	1	1	1	/	χĽ	Ж	81.8	83.1
adamw	adamw	×	Ж	1	1	1	1	1	Х	Ж	79.6	80.4
adamw	adamw	×	✓	1	1	1	1	/	X	X	81.2	81.9
adamw	adamw	1	χ	Х	1	1	1	1	Ж,	Ж	78.7	79.8
adamw	adamw	1	Х	1	х	1	1	1	X	X	80.0	80.6
adamw	adamw	1	Х	Х	Х	√	1	\checkmark	Ж	Ж	75.8	76.7
adamw	adamw	1	Х	1	1	х	1	1	Х	Х	4.3*	0.1
adamw	adamw	1	Х	1	1	1	X	1	X	X	3.4*	0.1
adamw	adamw	1	Х	1	1	1	1	х	Х	×	76.5	77.4
adamw	adamw	1	Х	1	1	1	1	1	1	X	81.3	83.1
adamw	adamw	1	Х	1	1	1	1	1	Х	1	81.9	83.1

a) Elegant solution of T2T-ViT

b) Brute force solution of DeiT


Better Results

 Compared to DeiT, T2T achieves higher accuracy without large CNN models as teachers to enhance the ViT.

Models	Top1-Acc (%)	Params (M)	MACs (G)	
ViT-S/16 [12]	78.1	48.6	10.1	
DeiT-small [36]	79. 9	22.1	4.6	
DeiT-small-Distilled [36]	81.2	22.1	4.7	
T2T-ViT-14	81.5	21.5	4.8	
T2T-ViT-14↑384	83.3	21.5	17.1	
ViT-B/16 [12]	79.8	86.4	17.6	
ViT-L/16 [12]	81.1	304.3	63 .6	
T2T-ViT-24	82.3	64.1	13.8	

Impressive Accuracy vs Cost Tradeoff

 Compared to ResNets or ViTs, T2T achieves much better results for the same or even lower computational complexity.

