Swin Transformer : Hierarchical Vision
Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao, Han Hu,
Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

ICCV 2021

Paper Presentation by : Li Hui Cham, Liujie Zheng

ViT vs CNN

e VIiT captures global dependencies (self-attention) while CNN
appreciate locality.
O ViT has weaker inductive bias than CNN

e \When train on mid-sized dataset, ResNet-like architectures
perform better; however, ViT approached or surpassed the

SOTA models’ performance with larger dataset
o Computational demands can limit ViT efficiency in limited resources

Motivation

e VIiT fails to process high-resolution image without having its
computational complexity scales to quadratic of image size
(global self-attention)

o Standard VIiT produces feature maps of a single low resolution
o Tasks like semantic segmentation requires dense prediction at
pixel level

e \We want to expand the applicability of Transformer to serve as a
general purpose backbone for computer vision

Question

How can we improve efficiency and greater
accuracy with Transformer-based model ?

e Efficiency - lower computational complexity
e Accuracy - higher resolution, dense prediction

Swin Transformer Architecture

A

—— -

LN
A

4 N
1 1
] 1
1 A 1
v v
Warll| = JD e :
U5 alaanra - el "
1N ™ W Ny
/I IIIIIIIIIIIIIIIIIIII ’
w P * |||||| ~
X 5 \
=80 =] mk "
x ! g 3 ﬂ_
H_Mu.u"4 n €m 1
1 80 m "
1 8
R + 1
1
Q X H SuiSey yo1ed _ !
X . A "
BIE e s e s i
= ~\ = I—
S 5]
" g mkc 6"
1 298 X1
1N v cm 1
_%e & 1
1S e 1
1A * 1
1 1
Qi — SuiSoy yo1ed _ .
X S A a
Ele TTTTTCTICCZCCZCC
X \\ la
oo 1 8 1
! a m.w 1
: R K
i) “gm "
_Wc = 1
_S * 1
" Suid. .
uISID] YoIe 1
L (FEme)
% M A i
Rlw TR CEATE TR
X ¢ o l»
H] o 1
o i)
: < 3 X !
- /2] gm !
_e s 1
150 = 1
_mm 1
' A i
1 1
% | [Burppoquig awoury | ;
e e e . ‘
X
=« [vonnreduyoeg |

HxWx3
Images [

(b) Two Successive Swin Transformer Blocks

(a) Architecture

Swin Transformer Architecture

Key techniques :

e Patch Merging

e Shifted Window Based Self Attention
o Window based self-attention
o Shifted window partitioning

Patch Merging

H W H W
e To produce hierarchical feature i _TX_XC 5 Xg x20
v 077 T Stage2 v 7 Stage3
maps |: tage \I |' tage
e Patch merging operation downsamples HENNE el r

the input by a factor of n by grouping

nxn patches and concatenating the _
patches depth-wise. C is the channel number of

the hidden |
e HxWxCto (H/n)x (W/n) x (n2*C) © niaaen ayers
Lastly, apply a linear embedding layer
to reduce dimension

o (H/n)x(W/n)xn*C)

Patch Merging

Assuming that n=2, and each group consists of 2x2 neighboring patches

Step 1: Split input image into groups of 2x2

Patch merging operation
downsamples the input by a
factor of n by grouping nxn
patches and concatenating
the patches depth-wise.

a ‘patch’ refers to the smallest unit in
a feature map.

Source :
https://towardsdatascience.com/a-comprehensive-quide-to-swin

-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Swin Transformer Block

e Replaces standard
multi-head self-attention
module in ViT with W-MSA
and SW-MSA

e W : window ; SW : shifted
window

e EE EE EE EE EE EE EE O BN BN BN O BN BN S BN EE Em oy,

\
1
1

NL\‘
?l

S oam Em Em E E E E EE E E EE EE E EE e B B Ee Em

e Em Em Em o o E EE e E EE e E e e mm e am omm P

Window based self attention Standard MSA

resulting in quadratic complexity

e Multi self-attention (MSA) in

standard ViT performs global

self-attention
e Attention for each patch is

computed against all patches .
e Results in quadratic

computation complexity wrt

image size — not suitable for
high resolution image

Window-based self-attention (W-MSA)

e Self-attention is computed Window-based MSA

Attention fo atch is only computed within its own window (drawn in red)

within local window Window size is 2x2 in this example.
e Windows partitions the image

and are non-overlapping
e Fixed window size therefore

linear computational

complexity .

Right : An image is partitioned into 4 windows
(red), each window has 2x2 patches
(“window size”)

Shifted Window Partitioning

Shifted Window MSA
e \W-MSA is efficient but limits the

modelling power of the network

e Shifted Window MSA (SW-MSA)
iIntroduce cross-window
connections

e Displace the window by a factor
of MI/2 pixels (M is window size)
towards the bottom right direction

Step 1: Shift window by a factor of M/2, where M = window size

Cyclic Shift

_,|masked AR
5 MSA
B : L= B
masked | :
window partition C| A ~ MSA
cyclic shift reverse cyclic shift

Figure 4. Illustration of an efficient batch computation approach
for self-attention in shifted window partitioning.

Shift results in “isolated” patches and incomplete windows

Cyclic shift propose a more efficient batch computation

A batched window consists of non-adjacent sub-windows in the original feature map
Masking mechanism is employed to limit self-attention to within each sub-window

Image Classification on ImageNet-1K

(a) Regular ImageNet-1K trained models

a) trained on ImageNet-1K for 300

epochs

b) pre-trained on ImageNet-22K (22K
classes) for 90 epochs then fine-tuned on
ImageNet-1K for 30 epochs

(b) ImageNet-22K pre-trained models

method ["228® 4naram, FLOPs TroughputimageNet
size (image / s) |top-1 acc.
R-101x3 [7] |[384% 388M 204.6G - 84.4
R-152x4 [¢] |480% 937M [840.5G - 85.4
ViT-B/16 [20] |384* 86M 554G ___ 85.9 84.0
VIT-L/16 [20] |3842 307M [190.7G__ 273 852 |
Swin-B 224 88M 154G 278.1 85.2
Swin-B 384> 88M 47.0G___ 84.7 86.4
Swin-L 384 197M [103.90 42.1 87.3!

method nASe #param. FLOPs @oughput ImageDlet

size (image / s)|top-1 acc.

RegNetY-4G [47] | 224> 2IM 4.0G 1156.7 80.0
RegNetY-8G [47] | 2242 39M 8.0G 591.6 81.7
RegNetY-16G [17][2242 84M 16.0G [334.7] 82.9
EffNet-B3[°] [300®° 12M 18G 732.1 81.6
EffNet-B4 [52] |380% 19M 42G 3494 82.9
EffNet-B5 [“¢] |4562 30M 99G 169.1 83.6
EffNet-B6 [%] |528%2 43M 19.0G 96.9 84.0
EffNet-B7 [*%] | 600> 66M 37.0G |55.1 84.3
ViT-B/16 [2)] |384* 86M 554G 85.9 77.9
ViT-L/16 [20] | 3842 307M 190.7G 27.3 76.5
DeiT-S [] 2242 22M 4.6G 940.4 79.8
DeiT-B [¢7] |[224%2 86M 17.5G 2923 81.8
DeiT-B[*7] |384% 86M 554G 859 83.1
Swin-T 224 29M 45G 7552 81.3
Swin-S 2242 50M 8.7G %}ﬂ 83.0
Swin-B 224% 88M 154G ; 83.5
Swin-B 384> 88M 47.0G [R4T] 84.5

Object Detection on COCO 2017

a) Swin-T brings consistent +3.4~4.2 box
AP gains over ResNet-50, with slightly
larger model size, FLOPs and latency

b) Swin achieves significant gains over
other backbones which has similar model
size, FLOPs and latency.

Method

(a) Various frameworks

Backbone

APYE AP APPT

#param. FLOPs FPS

Cascade

Mask R-

R-50

CNN Swin-T

46.3
50.5

64.3
69.3

50.5
54.9

82M
86M

739G
745G

18.0
15.3

ATSS

R-50
Swin-T

43.5
47.2

61.9
66.5

47.0
51.3

32M
36M

205G
215G

28.3
223

RepPointsV2

R-50
Swin-T

46.5
50.0

64.6
68.5

50.3
54.2

42M
45M

274G
283G

13.6
12.0

Sparse
R-CNN

R-50
Swin-T

44.5
47.9

63.4
67.3

48.2
523

106M
110M

166G
172G

21.0
18.4

(b) Various backbones w. Cascade Mask R-CNN
APmask Aszn(;ask AP%"’SR

box box box
AP”* APsy" AP75

paramFLOPsFPS

DeiT-S’
R50
Swin-T

48.0167.2 51.7
46.3]164.3 50.5
50.5{69.3 54.9

41.4
40.1
43.7

64.2
61.7
66.6

44.3
43.4
47.1

80M 889G 10.4
82M 739G 18.0
86M 745G 15.3

X101-32
Swin-S

48.1166.5 52.4
51.8{70.4 56.3

41.6
44.7

63.9
67.9

45.2
48.5

10IM 819G 12.8
107M 838G 12.0

X101-64
Swin-B

48.3166.4 52.3
51.9{70.9 56.5

41.7
45.0

64.0
68.4

45.1
48.7

140M 972G 10.4

145M 982G 11.6

Object Detection on COCO 2017

c) The best Swin model achieves 58.7
box AP and 51.1 mask AP on COCO

(c) System-level Comparison

test-dev, surpassing the previous best
results by +2.7 box AP (Copy-paste
without external data) and +2.6 mask
AP (DetectoRS).

Method AP’{,‘:?ZP‘?,L* A;ﬁfﬁ;ﬁasx‘ #param. FLOPs
RepPointsV2* ['] | - - 52.1 - - -
GCNet* [] 51.8 447 | 523 454 - 1041G
RelationNet++* [/]| - - 52.7 - - -
SpineNet-190 [~ '] | 52.6 - 528 - 164M 1885G
ResNeSt-200* ['] | 52.5 - 533 47.1 - -
EfficientDet-D7 []| 544 - 55.1 - 7 410G
DetectoRS* [1] - - | 557 - -
YOLOv4 P7* [] - - 55.8 - - -
Copy-paste [0] | 559 47.2 |56.0] 47.4 | 185M 1440G
X101-64 (HTC++) | 52.3 46.0 - - 155M 1033G
Swin-B (HTC++) |56.4 49.1 - - 160M 1043G
Swin-L (HTC++) | 57.1 49.5 |57.7 50.2 | 284M 1470G
Swin-L (HTC++)* | 58.0 50.4 ||58.7| 51.1]| 284M -

Semantic Segmentation on ADE20K

Swin-S is +5.3 mloU higher than
DeiT-S with similar computation cost. It
is also +4.4 mloU higher than
ResNet-101, and +2.4 mioU higher
than ResNeSt-101.

Swin-L model with ImageNet-22K
pre-training achieves 53.5 mloU on the
val set, surpassing the previous best
model by +3.2 mloU (50.3 mloU by
SETR which has a larger model size).

ADE20K val test

Method Backbone |mloU score pardm, ELCIES KBS
DANet['] ResNet-101 [452 - | 69M 1119G 15.2
DLab.v3+[' /] ResNet-101 | 44.1 - | 63M 1021G 16.0
ACNet ['/] ResNet-101 | 459 385 | -

DNL['!] ResNet-101 | 46.0 562 | 69M 1249G 14.8
OCRNet ['] ResNet-101 56.0| 56M 923G 19.3
UperNet [©] ResNet-101 @ - 86M 1029G 20.1
OCRNet['] HRNet-w48 [457 - | 7IM 664G 12.5
DLab.v3+ [/] ResNeSt-101|[46.9] 55.1 | 66M 1051G 11.9
DLab.v3+ [/] ResNeSt-200| 48.4 - | 8M 1381G 8.1
SETR["!] TLarge* |[50.3] 61.7| 308M - .
UperNet DeiT-ST [440 - | 52M 1099G 16.2
UperNet Swin-T [46.1 - | 60M 945G 18.5
UperNet Swin-S - | 8IM 1038G 15.2
UperNet Swin-B* |51.6 - | 12IM 1841G 8.7
UperNet Swin-L! |[535] 62.8| 234M 3230G 62

Ablation Study

Swin-T with the shifted
window partitioning
outperforms the counterpart
built on a single window
partitioning

Swin-T with relative position
bias outperforms out
counterparts

ImageNet COCO ADE20k
top-1 top-5 | AP AP™* | mloU
w/o shifting 80.2 95.1 | 47.7 41.5 43.3
shifted windows | 81.3 95.6 | 50.5 43.7 46.1
no pos. 80.1 949 | 492 426 43.8
abs. pos. 80.5 952 | 490 424 43.2
abs.+rel. pos. 813 95.6 | 50.2 434 44.0
rel. pos. w/oapp. | 79.3 94.7 | 482 41.9 44.1
rel. pos. 813 95.6 | 505 43.7 46.1

Relative position bias:

Attention(Q, K, V) = SoftMax(QKT/\/E +B)V, 4)

Ablation Study

Shifted window attention is faster
than sliding window attention and
Performer (which is one of the
fastest Transformer architectures)
while having similar performance

(a) Full n? attention (b) Sliding window attention

method

MSA in a stage (ms)

S1 S2

S3 S4

Arch. (EPS)
T S B

sliding window (naive)
sliding window (kernel)

122.5 383 12.1 7.6

76 4.7

27 1.8

183 109 77
488 283 [187]

Performer []

48 2.8

1.8 1.5

638 370 241

window (w/o shifting)

28 1.7

1.2 09

770 444 280

shifted window (padding)
shifted window (cyclic)

33 23
30 19

1.9 22
1.3 1.0

670 371 236
755 437

Backbone

ImageNet
top-1 top-5

COCO
APbox APmask

ADE20k
mloU

sliding window
Performer []

Swin-T
Swin-T

81.4 95.6
79.0 94.2

50.2 435

45.8

shifted window

Swin-T

81.3 95.6

50.5 43.7

46.1

Summary

e Novelty. The Shifted Window Self Attention mechanism introduces linear
computational complexity in ViT using local window while keeping the global
representation of the image with cross-window connections.

e Scalable. The author modifies the self-attention mechanism on ViT instead of
CNN architecture, Swin Transformer achieves the goal of a general purpose
backbone for CV.

e Fair comparison. The authors are trying their best to make fair comparisons
by comparing models with similar sizes and FLOPs.

e Speed-accuracy trade off. Comparing to previous state-of-the-art, Swin
Transformer achieves better accuracy with similar speed on multiple tasks.
Comparing to sliding window attention, shifted window attention maintains
similar performance while being significantly faster.

Thank you

