Swin Transformer : Hierarchical Vision Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo ICCV 2021

Paper Presentation by : Li Hui Cham, Liujie Zheng

ViT vs CNN

- ViT captures global dependencies (self-attention) while CNN appreciate locality.
 - ViT has weaker inductive bias than CNN
- When train on mid-sized dataset, ResNet-like architectures perform better; however, ViT approached or surpassed the SOTA models' performance with larger dataset
 - Computational demands can limit ViT efficiency in limited resources

Motivation

- ViT fails to process high-resolution image without having its computational complexity scales to quadratic of image size (global self-attention)
 - Standard ViT produces feature maps of a single **low resolution**
 - Tasks like semantic segmentation requires dense prediction at pixel level
- We want to expand the applicability of Transformer to serve as a general purpose backbone for computer vision

Question

How can we improve efficiency and greater accuracy with Transformer-based model ?

- Efficiency lower computational complexity
- Accuracy higher resolution, dense prediction

Swin Transformer Architecture

Swin Transformer Architecture

Key techniques :

- Patch Merging
- Shifted Window Based Self Attention
 - Window based self-attention
 - Shifted window partitioning

Patch Merging

- To produce hierarchical feature maps
- Patch merging operation downsamples the input by a factor of n by grouping nxn patches and concatenating the patches depth-wise.
- $H \ge W \ge C$ to $(H/n) \ge (W/n) \ge (n^2 C)$
- Lastly, apply a linear embedding layer to reduce dimension
 - $\circ \quad (H/n) \ge (W/n) \ge (n^*C)$

C is the channel number of the hidden layers

Patch Merging

Assuming that n=2, and each group consists of 2x2 neighboring patches

Step 1: Split input image into groups of 2x2

Step 2: In each group, stack the patches depth-wise Step 3: Combine the stacked groups

Patch merging operation downsamples the input by a factor of n by grouping nxn patches and concatenating the patches depth-wise.

a 'patch' refers to the smallest unit in a feature map.

Source :

https://towardsdatascience.com/a-comprehensive-guide-to-swin -transformer-64965f89d14c

Swin Transformer Block

- Replaces standard multi-head self-attention module in ViT with W-MSA and SW-MSA
- W : window ; SW : shifted window

Window based self attention

- Multi self-attention (MSA) in standard ViT performs global self-attention
- Attention for each patch is computed against all patches
- Results in quadratic computation complexity wrt image size → not suitable for high resolution image

Standard MSA

Attention for each patch is computed against all patches, resulting in quadratic complexity

Window-based self-attention (W-MSA)

- Self-attention is computed within **local** window
- Windows partitions the image and are **non-overlapping**
- Fixed window size therefore linear computational complexity

Right : An image is partitioned into 4 windows (red), each window has 2x2 patches ("window size")

Window-based MSA

Attention for each patch is only computed within its own window (drawn in red). Window size is 2x2 in this example.

Shifted Window Partitioning

- W-MSA is efficient but limits the modelling power of the network
- Shifted Window MSA (SW-MSA) introduce cross-window connections
- Displace the window by a factor of *M*/2 pixels (M is window size) towards the bottom right direction

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size Step 2: For efficient batch computation, move patches into empty slots to create a complete window. This is known as 'cyclic shift' in the paper.

Cyclic Shift

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

- Shift results in "isolated" patches and incomplete windows
- Cyclic shift propose a more efficient batch computation
- A batched window consists of **non-adjacent sub-windows** in the original feature map
- **Masking mechanism** is employed to limit self-attention to within each sub-window

Image Classification on ImageNet-1K

image #param. FLOPs throughput ImageNet a) trained on ImageNet-1K for 300 method size epochs RegNetY-4G [48] 224^{2} 21M 4.0G RegNetY-8G [48] 224² 39M 8.0G b) pre-trained on ImageNet-22K (22K RegNetY-16G [48] 224² 84M 16.0G classes) for 90 epochs then fine-tuned on EffNet-B3 [58] 300^{2} 12M 1.8G ImageNet-1K for 30 epochs EffNet-B4 [58] 380^{2} 19M 4.2G 456^{2}

		EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0	
(b) Im	ageNet-22K pre-trained models	EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3	
method	image #param, FLOPs throughput ImageNet	ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9	_
	size (image / s) top-1 acc.	ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5	
R-101x3 [38]	384 ² 388M 204.6G - 84.4	DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8	
R-152x4 [38]	480 ² 937M 840.5G - 85.4	DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8	
ViT-B/16 [20]	384 ² 86M 55.4G 85.9 84.0	DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1	
ViT-L/16 [20]	384 ² 307M 190.7G 27.3 85.2	Swin-T	224 ²	29M	4.5G	755.2	81.3	
Swin-B	224 ² 88M 15.4G 278.1 85.2	Swin-S	224 ²	50M	8.7G	436.9	83.0	
Swin-B	384 ² 88M 47.0G 84.7 86.4	Swin-B	224 ²	88M	15.4G	278.1	83.5	
Swin-L	384 ² 197M 103.9G 42.1 87.3	Swin-B	384 ²	88M	47.0G	84.7	84.5	

EffNet-B5 [58]

(a) Regular ImageNet-1K trained models

30M

9.9G

(image / s) top-1 acc.

80.0

81.7

82.9

81.6

82.9

83.6

1156.7

591.6

334.7

732.1

349.4

169.1

Object Detection on COCO 2017

a) Swin-T brings consistent +3.4~4.2 box AP gains over ResNet-50, with slightly larger model size, FLOPs and latency

b) Swin achieves significant gains over other backbones which has similar model size, FLOPs and latency.

(a) Various frameworks

Metho	bd	Backt	one	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#pa	ram.	FLOPs	FPS
Casca	de	R-5	i0	46.3	64.3	50.5	82	2M	739G	18.0
Mask R-	CNN	Swir	n-T	50.5	69.3	54.9	86	δM	745G	15.3
ATS	S	R-5	60	43.5	61.9	47.0	32	2M	205G	28.3
AIS	3	Swir	n-T	47.2	66.5	51.3	36	M	215G	22.3
RenPoin	teV2	R-5	0	46.5	64.6	50.3	42	2M	274G	13.6
Kepi om	15 V 2	Swir	n-T	50.0	68.5	54.2	45	M	283G	12.0
Spars	se	R-5	i0	44.5	63.4	48.2	10	6M	166G	21.0
R-CN	N	Swir	n-T	47.9	67.3	52.3	11	0M	172G	18.4
(b) `	Vario	us bao	kbo	nes w.	Casca	ade M	ask]	R-CI	NN	
	AP ^{box}	AP ₅₀ ^{box}	AP ^{bo} ₇₅	$ ^{x} AP^{m}$	ask AP5	nask AP	mask 75	baran	nFLOP	FPS
DeiT-S [†]	48.0	67.2	51.7	41.	4 64	.2 44	.3	80M	889G	10.4
R50	46.3	64.3	50.5	6 40.	1 61	.7 43	.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.	7 66	.6 47	.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.	6 63	.9 45	5.2 1	101M	1 819G	12.8
Swin-S	51.8	70.4	56.3	44.	7 67	.9 48	5.5	07M	1 838G	12.0
X101-64	48.3	66.4	52.3	8 41.	7 64	.0 45	.1	140M	1 972G	10.4
Swin-B	51.9	70.9	56.5	5 45.	0 68	.4 48	.7 1	145M	1 982G	11.6

Object Detection on COCO 2017

c) The best Swin model achieves 58.7 box AP and 51.1 mask AP on COCO test-dev, surpassing the previous best results by +2.7 box AP (Copy-paste without external data) and +2.6 mask AP (DetectoRS).

(c) System-level Comparison

Method	mini-val		test	-dev	#param.	FLOPs	
	AP	AP	AP	AP ^{box} AP ^{mask}			
RepPointsV2* [12]	-	-	52.1	-	-	-	
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G	
RelationNet++* [13]	-	-	52.7	-	-	-	
SpineNet-190 [21]	52.6	1277	52.8	-	164M	1885G	
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-	
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G	
DetectoRS* [46]	-	-	55.7	48.5	-	-	
YOLOv4 P7* [4]	-	-	55.8	344	-	-	
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G	
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G	
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G	
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G	
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-	

Semantic Segmentation on ADE20K

Swin-S is +5.3 mIoU higher than DeiT-S with similar computation cost. It is also +4.4 mIoU higher than ResNet-101, and +2.4 mIoU higher than ResNeSt-101.

Swin-L model with ImageNet-22K pre-training achieves 53.5 mIoU on the val set, surpassing the previous best model by +3.2 mIoU (50.3 mIoU by SETR which has a larger model size).

ADE20K		val	test	Harom		EDC
Method	Backbone	mIoU	score	#param.	FLOFS	ггэ
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	$Swin-B^{\ddagger}$	51.6	-	121M	1841G	8.7
UperNet	Swin-L ^{\ddagger}	53.5	62.8	234M	3230G	6.2

Ablation Study

Swin-T with the shifted window partitioning outperforms the counterpart built on a single window partitioning

Swin-T with relative position bias outperforms out counterparts

	ImageNet		CC)CO	ADE20k
	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Relative position bias:

Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V,$ (4)

Ablation Study

Shifted window attention is faster than sliding window attention and Performer (which is one of the fastest Transformer architectures) while having similar performance

(b) Sliding window attention

method		MSA	MSA in a stage (ms)					Arch. (FPS)		
metho	S 1	S 2	S 3	S 4	T	S	В			
sliding window	w (naive)	122.5	38.3	12.1	7.6	183	109	77		
sliding window	v (kernel)	7.6	4.7	2.7	1.8	488	283	187		
Performer	[14]	4.8	2.8	1.8	1.5	638	370	241		
window (w/o	2.8	1.7	1.2	0.9	770	444	280			
shifted window (padding)		3.3	2.3	1.9	2.2	670	371	236		
shifted window	v (cyclic)	3.0	1.9	1.3	1.0	755	437	278		
		ImageNet		C	COCO			ADE20k		
	Backbone	top-1	top-5	APbo	Al	P ^{mask}	mI	oU		
sliding window	liding window Swin-T		95.6	50.2	2 4	3.5	45.8			
Performer [14]	Swin-T	79.0	94.2	-		-		-		
shifted window	Swin-T	81.3	95.6	50.5	5 4	3.7	46	5.1		
			-					- 14 - 14		

Summary

- Novelty. The Shifted Window Self Attention mechanism introduces linear computational complexity in ViT using local window while keeping the global representation of the image with cross-window connections.
- Scalable. The author modifies the self-attention mechanism on ViT instead of CNN architecture, Swin Transformer achieves the goal of a general purpose backbone for CV.
- Fair comparison. The authors are trying their best to make fair comparisons by comparing models with similar sizes and FLOPs.
- Speed-accuracy trade off. Comparing to previous state-of-the-art, Swin Transformer achieves better accuracy with similar speed on multiple tasks. Comparing to sliding window attention, shifted window attention maintains similar performance while being significantly faster.

Thank you