Video Modeling

How can we model temporal information in the video?
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Video Classification

Given a video, we want to classify it into one of the human
action categories.

Opening a Fridge
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LRCN Model

* The paper proposes a long-term recurrent convolutional
network (LRCN).

* The proposed model enables learning visual
dependencies in space and time.
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Long Short Term Memory Network

* Arecurrent neural network that enables sequence modeling
(e.g. videos, text, etc).

* This is achieved via a memory mechanism that allows the
network to remember what has happened in the past.

* In contrast, standard CNNs process each input (e.g., video
frame) independently thus, forgetting what has happened
before.
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Long Short Term Memory Network
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@ - elementwise multiplication H - concatenation

O - sigmoid function tanh - tanh function

@ - elementwise summation
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features for frame t)



Long Short Term Memory Unit
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Gating Mechanisms

Gates control what information should be added / retained.
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Gating Mechanisms

Gates control what information should be added / retained.
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Long Short Term Memory Network
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LRCN for Action Recognition

Activity Recognition
Sequences in the Input

| HighJump |




UCF-101 Dataset

« UCF-101 consists of 13,320 videos belonging to 101 action
categories.
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Action Recognition Results

« Performance is evaluated using action recognition accuracy.

Single Input Type
Model RGB Flow

- Single frame | 67.37 74.37
LRCN-fcg 68.20 77.28




Ablation Study

« The authors investigate the performance gap between between
LRCN and a single-frame baseline.

Label A | Label A
BoxingPunchingBag  40.82 | BoxingSpeedBag -16.22
HighJump 29.73 | Mixing -15.56
JumpRope 28.95 | Knitting -14.71
CricketShot 28.57 | Typing -13.95
Basketball 28.57 | Skiing -12.50
WallPushups 25.71 | BaseballPitch -11.63
Nunchucks 22.86 | BrushingTeeth -11.11
ApplyEyeMakeup 22.73 | Skijet -10.71
HeadMassage 21.95 @ Haircut -9.10

Drumming 17.78 | TennisSwing -8.16




Summary

* One of the first approaches to integrate CNNs and
LSTMs for visual sequence modeling.

* The entire system can be trained end-to-end.

« The gains from temporal modeling are somewhat
limited.



Discussion Points

« The CNN + LSTM architecture was not as successful as
we had hoped it would be. Why?

* |s motion information useful on benchmarks like

UCF-1017? If not, why the results are so much better
with the optical flow modality?



