
How can we model temporal information in the video?

time

Input Video

Video Modeling



Video Classification

Cartwheeling Braiding Hair Opening a Fridge

Given a video, we want to classify it into one of the human 
action categories.
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Long Short Term Memory Network

• A recurrent neural network that enables sequence modeling 
(e.g. videos, text, etc). 

• This is achieved via a memory mechanism that allows the 
network to remember what has happened in the past. 

• In contrast, standard CNNs process each input (e.g., video 
frame) independently thus, forgetting what has happened 
before.
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ŷt�1 ŷt ŷt+1
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ŷt�1 ŷt ŷt+1
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Long Short Term Memory Unit
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LRCN for Action Recognition



UCF-101 Dataset

• UCF-101 consists of 13,320 videos belonging to 101 action 
categories.



Action Recognition Results

• Performance is evaluated using action recognition accuracy.



• The authors investigate the performance gap between between 
LRCN and a single-frame baseline.

Ablation Study



Summary

• One of the first approaches to integrate CNNs and 
LSTMs for visual sequence modeling. 

• The entire system can be trained end-to-end. 

• The gains from temporal modeling are somewhat 
limited.



Discussion Points

• The CNN + LSTM architecture was not as successful as 
we had hoped it would be. Why? 

• Is motion information useful on benchmarks like 
UCF-101? If not, why the results are so much better 
with the optical flow modality?


