Video Modeling

How can we model temporal information in the video?

Input Video

time

Video Classification

Given a video, we want to classify it into one of the human action categories.

Cartwheeling

Braiding Hair

Opening a Fridge

Long-term Recurrent Convolutional Networks for Visual Recognition and Description CVPR 2015

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, Kate Saenko, Trevor Darrell

LRCN Model

- The paper proposes a long-term recurrent convolutional network (LRCN).
- The proposed model enables learning visual dependencies in space and time.

LRCN Model

- The paper proposes a long-term recurrent convolutional network (LRCN).
- The proposed model enables learning visual dependencies in space and time.

- A recurrent neural network that enables sequence modeling (e.g. videos, text, etc).
- This is achieved via a memory mechanism that allows the network to remember what has happened in the past.
- In contrast, standard CNNs process each input (e.g., video frame) independently thus, forgetting what has happened before.

Time t

Current Input (e.g., 2D CNN features for frame t)

Gates control what information should be added / retained.

Memory Cell from Previous Timestep

$$C_{t-1}$$

$$f_t$$

The Forget Gate

Gates control what information should be added / retained.

Memory Cell from Previous Timestep

$$C_{t-1}$$

 f_t

Gates control what information should be added / retained.

Gates control what information should be added / retained.

Gates control what information should be added / retained.

What new information to add

LRCN for Action Recognition

Activity Recognition Sequences in the Input

UCF-101 Dataset

• UCF-101 consists of 13,320 videos belonging to 101 action categories.

Action Recognition Results

• Performance is evaluated using action recognition accuracy.

	Single Input Type		
Model	RGĐ	Flow	
Single frame	67.37	74.37	
LRCN-fc6	68.20	77.28	

Ablation Study

• The authors investigate the performance gap between between LRCN and a single-frame baseline.

Label	Δ	Label	Δ
BoxingPunchingBag	40.82	BoxingSpeedBag	-16.22
HighJump	29.73	Mixing	-15.56
JumpRope	28.95	Knitting	-14.71
CricketShot	28.57	Typing	-13.95
Basketball	28.57	Skiing	-12.50
WallPushups	25.71	BaseballPitch	-11.63
Nunchucks	22.86	BrushingTeeth	-11.11
ApplyEyeMakeup	22.73	Skijet	-10.71
HeadMassage	21.95	Haircut	-9.10
Drumming	17.78	TennisSwing	-8.16

Summary

- One of the first approaches to integrate CNNs and LSTMs for visual sequence modeling.
- The entire system can be trained end-to-end.
- The gains from temporal modeling are somewhat limited.

Discussion Points

- The CNN + LSTM architecture was not as successful as we had hoped it would be. Why?
- Is motion information useful on benchmarks like UCF-101? If not, why the results are so much better with the optical flow modality?