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Motivations

Masked autoencoding based method achieves great success in NLP domain, but
the same idea doesn't work as well in vision. Why the same success has not been

replicated in vision?
The author tries to find reasons from three aspects

e Architecture
e Information density
e Decoder design



Motivations - Backbone Architecture

CNN(Convolutional Neural Network) vs ViT(Visual Transformer)
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Image source: https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
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Vision Transformer (ViT) Transformer Encoder

Image source: https://arxiv.org/pdf/2010.11929v2.pdf

CNN architecture may also work well.
ConvMAE:

Model ResNet- ResNet- ResNet- ViT- ViT- ViT-
50 101 152 Base Large Huge
# parameters | 25.6M 44 5M 60.2M 86M 307M 632M

https://arxiv.org/pdf/2205.03892.pdf




Motivations - Information Density

Difference between language and Image
e Language
o Human generated signal, discrete

o Strong semantic structure
o Abstract, compact and highly information-dense.

e Image

o Nature signal, continuous
o Heavy spatial redundancy, low information density.

Language is more information-dense than image. So, masking 15% of words in a sentence is not equivalent to making 15%
of patches in an image. We may need to mask more patches in an image to reach the same level of information loss in a

sentence.



Motivations - Decoder Design

e Decoder design plays a key role in determining the semantic level of the learned latent
representations.
e If the decoder is too simple, the pixel reconstruction quality will be bad and the encoder

is difficult to learn meaningful representations.

e If the decoder is too complicated, the pixel reconstruction quality will be good but the
more semantic representation may shift to the decoder side and leave the learned
features from the encoder less semantic

e We need to make a good trade-off in the complexity of the decoder so that the encoder
can learn more semantic/high-level features.



Masked Autoencoder - Overall Architecture
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Asymmetric encoder and
decoder architecture

Encoder only operates on un-
maksed patches

Decoder operates on encoded
visible patches and masked
tokens



MAE - Design Detalils

Masking

e Randomly sample a subset of patches and mask (i.e., remove) the remaining ones.

e  High masking ratio
Encoder

e BasedonViT
e  Only operates on visible patch.

Decoder

e Operates on both encoded visible patches and mask tokens

e  Only used during pre-training.

Reconstruction loss

e L2(MSE) loss, computed only on masked patches
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BERT (Bidirectional Encoder Representation from Transformers)
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Mask ratio:15%

Decoder/prediction: MLP

BERT-B (L=12, H=768, A=12, 110M)
BERT-L (L=24, H=1024, A=16, 340M)



BEiT(Bidirectional Encoder representation from Image Transformers)
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Tokenize the image to
discrete visual tokens, by
using the latent codes of
discrete VAE(VQ-VAE)

The model learns to
recover the visual tokens
of the original image,
instead of the raw pixels
of masked patches.



Experiment Setup

e Fncoder ViT-B ViT-l ViT-H ViT-H448

Model Layers Hiddensize D MLPsize Heads Params

ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307™M

ViT-Huge 32 1280 5120 16 632M
e Decoder

o Depth:1-8 blocks(of transformer)
o Width: 128-1024 dim
Need extra projection layer to match the encode and decode width

Training VIT-L/H from scratch on ImageNet-1K can be very tricky, need strong regularization.
e Pre-training, fine-tune, linear probe, partial fine-tune



ImageNet-1K Results

Use ViT-L(307M parameters), pre-trained on ImageNet-1K.

Top-1 validation accuracy

Scratch, original Scratch, w. strong reg. MAE + fine-tuning

76.5 82.9 84.9

MAE pre-training outperforms supervised pre-training on ImageNet-1K




ImageNet-1K Results

Masking ratio
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Figure 5. Masking ratio. A high masking ratio (75%) works well
for both fine-tuning (top) and linear probing (bottom). The y-axes
are ImageNet-1K validation accuracy (%) in all plots in this paper.



ImageNet-1K Results

Decoder Design

blocks ft lin dim ft lin

1 84.8 65.5 128 84.9 69.1

2 84.9 70.0 256 84.8 71.3

4 84.9 71.9 512 84.9 s

8 84.9 73.5 768 84.4 73.1

12 84.4 73.3 1024 843 Tl
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
prove linear probing accuracy. rower than the encoder (1024-d).

Single-block decoder perform well with fine-tuning
Decoder: 8 blocks, 512-d width, only 9% FLOPs per token vs Encoder: 24 blocks, 1024-d



ImageNet-1K Results

Mask token
case ft lin FLOPs
encoder w/ [M] 84.2 59.6 3.3x
encoder w/o [M] 84.9 73.5 1x

(c) Mask token. An encoder without mask to-
kens 1s more accurate and faster (Table 2).

An important design of our MAE is to skip the mask token [M] in the encoder and
apply it later in the lightweight decoder.



ImageNet-1K Results

Reconstruction target

case ft lin

pixel (w/o norm) 84.9 735
pixel (w/ norm) 85.4 73.9
PCA 84.6 72.3
dVAE token 85.3 71.6

(d) Reconstruction target. Pixels as recon-
struction targets are effective.



ImageNet-1K Results

Data augmentation

case ft lin

none 84.0 65.7
crop, fixed size 84.7 i s
crop, rand size 84.9 s
crop + color jit 84.3 71.9

(e) Data augmentation. Our MAE works with
minimal or no augmentation.

MAE works well using cropping-only augmentation,
either fixed-size or random-size (both having random
horizontal flipping), behaves decently even if using
no data augmentation (only center-crop, no flipping).



Experiment - ImageNet-1K

Mask sampling strategy

case ratio ft lin

random 75 849 735
block 50 839 723
block 75 82.8 63.9
erid 75 84.0 66.0

(f) Mask sampling. Random sampling works
the best. See Figure 6 for visualizations.

e Block-wise: harder task, degrade at
75% ,blurrier reconstruction

e Grid-wise: easier task,lower quality
representation, sharper reconstruction

e Random: Higher mask ratio, faster and
accurate

random 75% "~ block 50% orid 75%

Figure 6. Mask sampling strategies determine the pretext task
difficulty, influencing reconstruction quality and representations
(Table 1f). Here each output is from an MAE trained with the spec-
ified masking strategy. Left: random sampling (our default). Mid-
dle: block-wise sampling [2] that removes large random blocks.
Right: grid-wise sampling that keeps one of every four patches.
Images are from the validation set.



ImageNet-1K Results

Training schedule
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Figure 7. Training schedules. A longer training schedule gives a
noticeable improvement. Here each point is a full training sched-
ule. The model is ViT-L with the default setting in Table 1.



ImageNet-1K Results

Comparisons with self-supervised methods

method pre-traindata ViT-B  ViT-L  ViT-H ViT-Hysg
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] INIK 82.8 - - -
MoCo v3 [9] INIK 83.2 84.1 - -
BEIT [2] INIK+DALLE  83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8
Table 3. Comparisons with previous results on ImageNet-

1K. The pre-training data is the ImageNet-1K training set (ex-
cept the tokenizer in BEIiT was pre-trained on 250M DALLE data
[50]). All self-supervised methods are evaluated by end-to-end
fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best
for each column is underlined. All results are on an image size of
224, except for ViT-H with an extra result on 448. Here our MAE
reconstructs normalized pixels and is pre-trained for 1600 epochs.

Comparisons with supervised pre-training
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Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.



ImageNet-1K Results

Partial fine-tuning
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Figure 9. Partial fine-tuning results of ViT-L w.r.t. the number
of fine-tuned Transformer blocks under the default settings from
Table 1. Tuning O blocks is linear probing; 24 is full fine-tuning.
Our MAE representations are less linearly separable, but are con-
sistently better than MoCo v3 if one or more blocks are tuned.



Experiment - Transfer Learning

Object detection and segmentation

APP Apmash
method pre-train data ViT-B  ViT-L ViT-B  ViT-L
supervised INIKw/labels  47.9 493 42.9 43.9
MoCov3  INIK 47.9 49.3 42.7 44.0
BEIT INTK+DALLE 49.8 - Xk 44 4 47.1
MAE INIK 50.3 53.3 44.9 47.2

Table 4. COCO object detection and segmentation using a ViT
Mask R-CNN baseline. All entries are based on our implementa-
tion. Self-supervised entries use IN1K data without labels. Mask
AP follows a similar trend as box AP.



Experiment - Transfer Learning

Semantic segmentation

method pre-train data ViT-B ViT-L
supervised IN1K w/ labels 47.4 499
MoCo v3 IN1K 47.3 49.1
BEIT IN1K+DALLE 47.1 53.3
MAE IN1K 48.1 53.6

Table 5. ADE20K semantic segmentation (mloU) using Uper-
Net. BEIT results are reproduced using the official code. Other

entries are based on our implementation. Self-supervised entries
use IN1K data without labels.



Experiment - Transfer Learning

Classification tasks

dataset ViT-B ViT-LL  ViT-H  ViT-Hagsg prev best
iNat 2017 70.5 75.7 79.3 83.4 75.4 [55]
iNat2018 754  80.1 830 868  81.2[54]
iNat2019 805 834 857 883  84.1[54]
Places205 639 658 659 668  66.0[19]t
Places365  57.9 59.4 59.8 60.3 58.0 [40)%

Table 6. Transfer learning accuracy on classification datasets,
using MAE pre-trained on IN1K and then fine-tuned. We provide
system-level comparisons with the previous best results.
T: pre-trained on 1 billion images. *: pre-trained on 3.5 billion images.



Experiment - Transfer Learning

Pixels vs. tokens.

INIK COCO ADE20K
ViT-B  ViT-L ViT-H | ViT-B ViT-L | ViT-B ViT-L
pixel (w/onorm) | 83.3 85.1 862 | 495 52.8| 480 518
pixel (w/ norm) 83.6 859 869 | 50.3 533 48.1 536
dVAE token 83.6 857 869 | 50.3 532| 48.1 534
A 0.0 -02 00| 00 -0.1 00 -0.2

Table 7. Pixels vs. tokens as the MAE reconstruction target. A is
the difference between using dVAE tokens and using normalized
pixels. The difference is statistically insignificant.



Experiment - Some Examples

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left). our MAE reconstruction
(middle), and the ground-truth (right). The masking ratio is 80%. leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible paiches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not 1o do this, so we can more comprehensively demonstrate the method’s behavior.

e e

Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2).
Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.



Experiment - Key findings

e MAE pre-trained on ImageNet1K outperform supervised counterpart.

e High masking ratio is crucial to the results, it also significant decrease the
computation cost during training.

e MAE is more data efficient, as shown in Table 6, MAE pre-trained on ImageNet1K
outperform the previous best results which were pre-trained on billions of images.
MAE works very well on transfer tasks.

Compared to contrast learning, MAE requires very little data argumentation.
MAE perform worse on linear probe compared to contrast learning counterpart. It
implies that the features learned from MAE is less linearly separable.



Summary

e Milestone work of applying masked autoencoding on vision, equivalent BERT

for NLP.
e Simple architecture, high training efficiency, superior results, easy to scale.

e Thorough evaluations on ImageNet ablation experiments.
e Why MAE works so well is still not fully understood, especially theory analysis

is lacking.



